metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC2_0_Supertypes_xlm-roberta-large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8330275229357799
- name: Recall
type: recall
value: 0.8764478764478765
- name: F1
type: f1
value: 0.8541862652869239
- name: Accuracy
type: accuracy
value: 0.9688830943068231
CNEC2_0_Supertypes_xlm-roberta-large
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2032
- Precision: 0.8330
- Recall: 0.8764
- F1: 0.8542
- Accuracy: 0.9689
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2421 | 1.11 | 500 | 0.1391 | 0.7211 | 0.8137 | 0.7646 | 0.9611 |
0.1055 | 2.22 | 1000 | 0.1429 | 0.7616 | 0.8605 | 0.8081 | 0.9633 |
0.0646 | 3.33 | 1500 | 0.1528 | 0.8 | 0.8629 | 0.8303 | 0.9665 |
0.0407 | 4.44 | 2000 | 0.1464 | 0.8097 | 0.8605 | 0.8343 | 0.9681 |
0.0291 | 5.56 | 2500 | 0.1630 | 0.8171 | 0.8600 | 0.8380 | 0.9666 |
0.015 | 6.67 | 3000 | 0.1808 | 0.8290 | 0.8678 | 0.8479 | 0.9680 |
0.009 | 7.78 | 3500 | 0.1919 | 0.8307 | 0.8740 | 0.8518 | 0.9689 |
0.0055 | 8.89 | 4000 | 0.1982 | 0.8375 | 0.8808 | 0.8586 | 0.9689 |
0.0034 | 10.0 | 4500 | 0.2032 | 0.8330 | 0.8764 | 0.8542 | 0.9689 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0