metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC2_0_Supertypes_xlm-roberta-large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8375401560348784
- name: Recall
type: recall
value: 0.8807915057915058
- name: F1
type: f1
value: 0.8586215008233357
- name: Accuracy
type: accuracy
value: 0.9697233087063596
CNEC2_0_Supertypes_xlm-roberta-large
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.1726
- Precision: 0.8375
- Recall: 0.8808
- F1: 0.8586
- Accuracy: 0.9697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6046 | 1.11 | 500 | 0.1815 | 0.6422 | 0.7693 | 0.7000 | 0.9498 |
0.1671 | 2.22 | 1000 | 0.1389 | 0.7436 | 0.8456 | 0.7913 | 0.9620 |
0.1141 | 3.33 | 1500 | 0.1455 | 0.7949 | 0.8813 | 0.8359 | 0.9686 |
0.0854 | 4.44 | 2000 | 0.1455 | 0.8012 | 0.8678 | 0.8332 | 0.9684 |
0.0716 | 5.56 | 2500 | 0.1418 | 0.7996 | 0.8663 | 0.8316 | 0.9682 |
0.0506 | 6.67 | 3000 | 0.1570 | 0.8138 | 0.8793 | 0.8453 | 0.9690 |
0.0399 | 7.78 | 3500 | 0.1701 | 0.8363 | 0.8803 | 0.8577 | 0.9689 |
0.0324 | 8.89 | 4000 | 0.1720 | 0.8313 | 0.8798 | 0.8549 | 0.9691 |
0.0265 | 10.0 | 4500 | 0.1726 | 0.8375 | 0.8808 | 0.8586 | 0.9697 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0