stulcrad commited on
Commit
04c9528
1 Parent(s): a228f33

Model save

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.0
29
  - name: Recall
30
  type: recall
31
- value: 0.0
32
  - name: F1
33
  type: f1
34
- value: 0.0
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.7809647979139505
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.9941
48
- - Precision: 0.0
49
- - Recall: 0.0
50
- - F1: 0.0
51
- - Accuracy: 0.7810
52
 
53
  ## Model description
54
 
@@ -67,7 +67,7 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 0.005
71
  - train_batch_size: 1
72
  - eval_batch_size: 1
73
  - seed: 42
@@ -77,11 +77,11 @@ The following hyperparameters were used during training:
77
 
78
  ### Training results
79
 
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:---:|:--------:|
82
- | 1.0478 | 1.0 | 7193 | 1.0002 | 0.0 | 0.0 | 0.0 | 0.7810 |
83
- | 0.9754 | 2.0 | 14386 | 0.9872 | 0.0 | 0.0 | 0.0 | 0.7810 |
84
- | 0.9377 | 3.0 | 21579 | 0.9941 | 0.0 | 0.0 | 0.0 | 0.7810 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8447596532702916
29
  - name: Recall
30
  type: recall
31
+ value: 0.8855844692275919
32
  - name: F1
33
  type: f1
34
+ value: 0.8646904617866505
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9681587715486021
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1762
48
+ - Precision: 0.8448
49
+ - Recall: 0.8856
50
+ - F1: 0.8647
51
+ - Accuracy: 0.9682
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
  - train_batch_size: 1
72
  - eval_batch_size: 1
73
  - seed: 42
 
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2106 | 1.0 | 7193 | 0.2086 | 0.7859 | 0.8203 | 0.8027 | 0.9563 |
83
+ | 0.1136 | 2.0 | 14386 | 0.1710 | 0.8391 | 0.8678 | 0.8532 | 0.9658 |
84
+ | 0.0973 | 3.0 | 21579 | 0.1762 | 0.8448 | 0.8856 | 0.8647 | 0.9682 |
85
 
86
 
87
  ### Framework versions