stulcrad commited on
Commit
139d41e
·
verified ·
1 Parent(s): 07717b0

Model save

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cnec
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: CNEC2_0_Supertypes_xlm-roberta-large
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: cnec
21
+ type: cnec
22
+ config: default
23
+ split: validation
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8317152103559871
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8682432432432432
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8495867768595041
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9680139069969579
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # CNEC2_0_Supertypes_xlm-roberta-large
44
+
45
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2072
48
+ - Precision: 0.8317
49
+ - Recall: 0.8682
50
+ - F1: 0.8496
51
+ - Accuracy: 0.9680
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2727 | 1.11 | 500 | 0.1414 | 0.7268 | 0.8012 | 0.7622 | 0.9594 |
83
+ | 0.1146 | 2.22 | 1000 | 0.1338 | 0.7697 | 0.8581 | 0.8115 | 0.9657 |
84
+ | 0.0725 | 3.33 | 1500 | 0.1444 | 0.7953 | 0.8625 | 0.8275 | 0.9668 |
85
+ | 0.0492 | 4.44 | 2000 | 0.1513 | 0.8085 | 0.8760 | 0.8409 | 0.9675 |
86
+ | 0.0388 | 5.56 | 2500 | 0.1604 | 0.8257 | 0.8731 | 0.8487 | 0.9674 |
87
+ | 0.0244 | 6.67 | 3000 | 0.1754 | 0.8278 | 0.8629 | 0.8450 | 0.9666 |
88
+ | 0.0169 | 7.78 | 3500 | 0.1877 | 0.8282 | 0.8653 | 0.8464 | 0.9677 |
89
+ | 0.0102 | 8.89 | 4000 | 0.1974 | 0.8252 | 0.8634 | 0.8439 | 0.9674 |
90
+ | 0.0068 | 10.0 | 4500 | 0.2072 | 0.8317 | 0.8682 | 0.8496 | 0.9680 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.36.2
96
+ - Pytorch 2.1.2+cu121
97
+ - Datasets 2.16.1
98
+ - Tokenizers 0.15.0