Model save
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: FacebookAI/xlm-roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- cnec
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: CNEC2_0_Supertypes_xlm-roberta-large
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: cnec
|
21 |
+
type: cnec
|
22 |
+
config: default
|
23 |
+
split: validation
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8317152103559871
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8682432432432432
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8495867768595041
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9680139069969579
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# CNEC2_0_Supertypes_xlm-roberta-large
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2072
|
48 |
+
- Precision: 0.8317
|
49 |
+
- Recall: 0.8682
|
50 |
+
- F1: 0.8496
|
51 |
+
- Accuracy: 0.9680
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2727 | 1.11 | 500 | 0.1414 | 0.7268 | 0.8012 | 0.7622 | 0.9594 |
|
83 |
+
| 0.1146 | 2.22 | 1000 | 0.1338 | 0.7697 | 0.8581 | 0.8115 | 0.9657 |
|
84 |
+
| 0.0725 | 3.33 | 1500 | 0.1444 | 0.7953 | 0.8625 | 0.8275 | 0.9668 |
|
85 |
+
| 0.0492 | 4.44 | 2000 | 0.1513 | 0.8085 | 0.8760 | 0.8409 | 0.9675 |
|
86 |
+
| 0.0388 | 5.56 | 2500 | 0.1604 | 0.8257 | 0.8731 | 0.8487 | 0.9674 |
|
87 |
+
| 0.0244 | 6.67 | 3000 | 0.1754 | 0.8278 | 0.8629 | 0.8450 | 0.9666 |
|
88 |
+
| 0.0169 | 7.78 | 3500 | 0.1877 | 0.8282 | 0.8653 | 0.8464 | 0.9677 |
|
89 |
+
| 0.0102 | 8.89 | 4000 | 0.1974 | 0.8252 | 0.8634 | 0.8439 | 0.9674 |
|
90 |
+
| 0.0068 | 10.0 | 4500 | 0.2072 | 0.8317 | 0.8682 | 0.8496 | 0.9680 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.36.2
|
96 |
+
- Pytorch 2.1.2+cu121
|
97 |
+
- Datasets 2.16.1
|
98 |
+
- Tokenizers 0.15.0
|