Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,15 +73,17 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8515562649640862
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8814539446509707
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8662472092551248
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9700709836303056
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2179
|
48 |
+
- Precision: 0.8516
|
49 |
+
- Recall: 0.8815
|
50 |
+
- F1: 0.8662
|
51 |
+
- Accuracy: 0.9701
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.267 | 1.0 | 7193 | 0.2806 | 0.7707 | 0.8009 | 0.7855 | 0.9525 |
|
83 |
+
| 0.1977 | 2.0 | 14386 | 0.1792 | 0.8151 | 0.8451 | 0.8299 | 0.9616 |
|
84 |
+
| 0.1767 | 3.0 | 21579 | 0.1935 | 0.8293 | 0.8711 | 0.8497 | 0.9662 |
|
85 |
+
| 0.0929 | 4.0 | 28772 | 0.2219 | 0.8382 | 0.8860 | 0.8614 | 0.9677 |
|
86 |
+
| 0.0788 | 5.0 | 35965 | 0.2179 | 0.8516 | 0.8815 | 0.8662 | 0.9701 |
|
87 |
|
88 |
|
89 |
### Framework versions
|