stulcrad commited on
Commit
ddde7ce
1 Parent(s): 3e7e6b7

Model save

Browse files
README.md CHANGED
@@ -20,21 +20,21 @@ model-index:
20
  name: cnec
21
  type: cnec
22
  config: default
23
- split: validation
24
  args: default
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8222823635543527
29
  - name: Recall
30
  type: recall
31
- value: 0.8798262548262549
32
  - name: F1
33
  type: f1
34
- value: 0.8500816041035206
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9681297986382732
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2071
48
- - Precision: 0.8223
49
- - Recall: 0.8798
50
- - F1: 0.8501
51
- - Accuracy: 0.9681
52
 
53
  ## Model description
54
 
@@ -67,26 +67,30 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 5e-05
71
- - train_batch_size: 32
72
- - eval_batch_size: 32
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
- - lr_scheduler_warmup_steps: 500
78
- - num_epochs: 15
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.4978 | 2.22 | 500 | 0.1737 | 0.6882 | 0.8118 | 0.7449 | 0.9548 |
85
- | 0.149 | 4.44 | 1000 | 0.1573 | 0.7540 | 0.8552 | 0.8014 | 0.9596 |
86
- | 0.0796 | 6.67 | 1500 | 0.1530 | 0.8024 | 0.8760 | 0.8376 | 0.9648 |
87
- | 0.0473 | 8.89 | 2000 | 0.1539 | 0.8051 | 0.8731 | 0.8377 | 0.9675 |
88
- | 0.0272 | 11.11 | 2500 | 0.2028 | 0.7973 | 0.8581 | 0.8266 | 0.9643 |
89
- | 0.0154 | 13.33 | 3000 | 0.2071 | 0.8223 | 0.8798 | 0.8501 | 0.9681 |
 
 
 
 
90
 
91
 
92
  ### Framework versions
 
20
  name: cnec
21
  type: cnec
22
  config: default
23
+ split: test
24
  args: default
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8236658932714617
29
  - name: Recall
30
  type: recall
31
+ value: 0.8751027115858668
32
  - name: F1
33
  type: f1
34
+ value: 0.848605577689243
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9646932746336094
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2014
48
+ - Precision: 0.8237
49
+ - Recall: 0.8751
50
+ - F1: 0.8486
51
+ - Accuracy: 0.9647
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
+ - lr_scheduler_warmup_steps: 1000
78
+ - num_epochs: 12
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 0.9082 | 1.11 | 500 | 0.2281 | 0.6024 | 0.7539 | 0.6697 | 0.9424 |
85
+ | 0.1977 | 2.22 | 1000 | 0.1808 | 0.7211 | 0.8369 | 0.7747 | 0.9544 |
86
+ | 0.1477 | 3.33 | 1500 | 0.1674 | 0.7716 | 0.8661 | 0.8161 | 0.9612 |
87
+ | 0.1105 | 4.44 | 2000 | 0.1628 | 0.7860 | 0.8780 | 0.8294 | 0.9633 |
88
+ | 0.0929 | 5.56 | 2500 | 0.1609 | 0.7982 | 0.8743 | 0.8345 | 0.9629 |
89
+ | 0.0735 | 6.67 | 3000 | 0.1740 | 0.7901 | 0.8722 | 0.8291 | 0.9625 |
90
+ | 0.0614 | 7.78 | 3500 | 0.1860 | 0.8027 | 0.8710 | 0.8355 | 0.9641 |
91
+ | 0.0513 | 8.89 | 4000 | 0.1823 | 0.8038 | 0.8804 | 0.8404 | 0.9633 |
92
+ | 0.0399 | 10.0 | 4500 | 0.1866 | 0.8103 | 0.8846 | 0.8458 | 0.9639 |
93
+ | 0.0327 | 11.11 | 5000 | 0.2014 | 0.8237 | 0.8751 | 0.8486 | 0.9647 |
94
 
95
 
96
  ### Framework versions
runs/Mar07_17-20-24_g01/events.out.tfevents.1709828424.g01.769784.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:93be20d94950b26f3f18e0acc07ce087b0b1ba02e3374dd15a022ac3e4f7909d
3
- size 11274
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abacca63ee742dca181d55cb7317808b4349dbfdfe10d7658d4ad0390dab212c
3
+ size 11628