Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -67,29 +67,34 @@ More information needed
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
-
- learning_rate:
|
71 |
- train_batch_size: 8
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_ratio: 0.1
|
77 |
- lr_scheduler_warmup_steps: 500
|
78 |
-
- num_epochs:
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8022359290670779
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8549712407559573
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8277645186953062
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9616810519608411
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2033
|
48 |
+
- Precision: 0.8022
|
49 |
+
- Recall: 0.8550
|
50 |
+
- F1: 0.8278
|
51 |
+
- Accuracy: 0.9617
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 16
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_ratio: 0.1
|
77 |
- lr_scheduler_warmup_steps: 500
|
78 |
+
- num_epochs: 8
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 0.6981 | 0.56 | 500 | 0.3042 | 0.5141 | 0.6652 | 0.5800 | 0.9121 |
|
85 |
+
| 0.2782 | 1.11 | 1000 | 0.2128 | 0.7078 | 0.8159 | 0.7580 | 0.9495 |
|
86 |
+
| 0.2247 | 1.67 | 1500 | 0.2200 | 0.7055 | 0.8081 | 0.7534 | 0.9450 |
|
87 |
+
| 0.1986 | 2.22 | 2000 | 0.2291 | 0.6569 | 0.8110 | 0.7259 | 0.9460 |
|
88 |
+
| 0.1697 | 2.78 | 2500 | 0.1819 | 0.7520 | 0.8184 | 0.7838 | 0.9548 |
|
89 |
+
| 0.1415 | 3.33 | 3000 | 0.1873 | 0.7341 | 0.7975 | 0.7645 | 0.9527 |
|
90 |
+
| 0.1284 | 3.89 | 3500 | 0.1752 | 0.7618 | 0.8578 | 0.8070 | 0.9590 |
|
91 |
+
| 0.1073 | 4.44 | 4000 | 0.1903 | 0.7793 | 0.8488 | 0.8126 | 0.9586 |
|
92 |
+
| 0.1006 | 5.0 | 4500 | 0.1741 | 0.7922 | 0.8661 | 0.8275 | 0.9610 |
|
93 |
+
| 0.0788 | 5.56 | 5000 | 0.1830 | 0.7995 | 0.8537 | 0.8258 | 0.9623 |
|
94 |
+
| 0.0838 | 6.11 | 5500 | 0.2096 | 0.8018 | 0.8509 | 0.8256 | 0.9610 |
|
95 |
+
| 0.0617 | 6.67 | 6000 | 0.1978 | 0.8056 | 0.8632 | 0.8334 | 0.9627 |
|
96 |
+
| 0.0515 | 7.22 | 6500 | 0.2020 | 0.8061 | 0.8521 | 0.8284 | 0.9616 |
|
97 |
+
| 0.0455 | 7.78 | 7000 | 0.2033 | 0.8022 | 0.8550 | 0.8278 | 0.9617 |
|
98 |
|
99 |
|
100 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235481556
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4239c214bf7649d0b63b1e63a4a06dcea71b8f3890f3729aa810fc760d22bb53
|
3 |
size 2235481556
|
runs/Mar07_18-36-10_g01/events.out.tfevents.1709832971.g01.769784.4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d4ddba1a4f8c33001d54183de7996eb8e1a00edf9c5171ed831866c139acfda
|
3 |
+
size 14141
|