stulcrad commited on
Commit
ebf5a0e
·
verified ·
1 Parent(s): 977e311

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.7760029717682021
29
  - name: Recall
30
  type: recall
31
- value: 0.8582580115036976
32
  - name: F1
33
  type: f1
34
- value: 0.8150604760046821
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9631292359381336
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1727
48
- - Precision: 0.7760
49
- - Recall: 0.8583
50
- - F1: 0.8151
51
- - Accuracy: 0.9631
52
 
53
  ## Model description
54
 
@@ -67,29 +67,34 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 2e-05
71
  - train_batch_size: 8
72
- - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
  - lr_scheduler_warmup_steps: 500
78
- - num_epochs: 5
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.9465 | 0.56 | 500 | 0.2705 | 0.4955 | 0.6754 | 0.5716 | 0.9281 |
85
- | 0.2305 | 1.11 | 1000 | 0.1836 | 0.7054 | 0.8205 | 0.7586 | 0.9539 |
86
- | 0.179 | 1.67 | 1500 | 0.1784 | 0.7485 | 0.8180 | 0.7817 | 0.9576 |
87
- | 0.1484 | 2.22 | 2000 | 0.1835 | 0.7571 | 0.8578 | 0.8043 | 0.9615 |
88
- | 0.1283 | 2.78 | 2500 | 0.1792 | 0.7333 | 0.8135 | 0.7713 | 0.9596 |
89
- | 0.1092 | 3.33 | 3000 | 0.1749 | 0.7707 | 0.8422 | 0.8049 | 0.9619 |
90
- | 0.0963 | 3.89 | 3500 | 0.1706 | 0.7711 | 0.8537 | 0.8103 | 0.9633 |
91
- | 0.0845 | 4.44 | 4000 | 0.1709 | 0.7811 | 0.8517 | 0.8149 | 0.9633 |
92
- | 0.0801 | 5.0 | 4500 | 0.1727 | 0.7760 | 0.8583 | 0.8151 | 0.9631 |
 
 
 
 
 
93
 
94
 
95
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8022359290670779
29
  - name: Recall
30
  type: recall
31
+ value: 0.8549712407559573
32
  - name: F1
33
  type: f1
34
+ value: 0.8277645186953062
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9616810519608411
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2033
48
+ - Precision: 0.8022
49
+ - Recall: 0.8550
50
+ - F1: 0.8278
51
+ - Accuracy: 0.9617
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
  - train_batch_size: 8
72
+ - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
  - lr_scheduler_warmup_steps: 500
78
+ - num_epochs: 8
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 0.6981 | 0.56 | 500 | 0.3042 | 0.5141 | 0.6652 | 0.5800 | 0.9121 |
85
+ | 0.2782 | 1.11 | 1000 | 0.2128 | 0.7078 | 0.8159 | 0.7580 | 0.9495 |
86
+ | 0.2247 | 1.67 | 1500 | 0.2200 | 0.7055 | 0.8081 | 0.7534 | 0.9450 |
87
+ | 0.1986 | 2.22 | 2000 | 0.2291 | 0.6569 | 0.8110 | 0.7259 | 0.9460 |
88
+ | 0.1697 | 2.78 | 2500 | 0.1819 | 0.7520 | 0.8184 | 0.7838 | 0.9548 |
89
+ | 0.1415 | 3.33 | 3000 | 0.1873 | 0.7341 | 0.7975 | 0.7645 | 0.9527 |
90
+ | 0.1284 | 3.89 | 3500 | 0.1752 | 0.7618 | 0.8578 | 0.8070 | 0.9590 |
91
+ | 0.1073 | 4.44 | 4000 | 0.1903 | 0.7793 | 0.8488 | 0.8126 | 0.9586 |
92
+ | 0.1006 | 5.0 | 4500 | 0.1741 | 0.7922 | 0.8661 | 0.8275 | 0.9610 |
93
+ | 0.0788 | 5.56 | 5000 | 0.1830 | 0.7995 | 0.8537 | 0.8258 | 0.9623 |
94
+ | 0.0838 | 6.11 | 5500 | 0.2096 | 0.8018 | 0.8509 | 0.8256 | 0.9610 |
95
+ | 0.0617 | 6.67 | 6000 | 0.1978 | 0.8056 | 0.8632 | 0.8334 | 0.9627 |
96
+ | 0.0515 | 7.22 | 6500 | 0.2020 | 0.8061 | 0.8521 | 0.8284 | 0.9616 |
97
+ | 0.0455 | 7.78 | 7000 | 0.2033 | 0.8022 | 0.8550 | 0.8278 | 0.9617 |
98
 
99
 
100
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4723c3840dfced7d9d3b0e3175128c805cdc4ec99b08f22d2aeaa71fb271da1
3
  size 2235481556
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4239c214bf7649d0b63b1e63a4a06dcea71b8f3890f3729aa810fc760d22bb53
3
  size 2235481556
runs/Mar07_18-36-10_g01/events.out.tfevents.1709832971.g01.769784.4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8922a7e53750f4aef720bb5cd2a05ff3fb2b45f3728fa42dea45c06409abab67
3
- size 13787
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4ddba1a4f8c33001d54183de7996eb8e1a00edf9c5171ed831866c139acfda
3
+ size 14141