stulcrad commited on
Commit
f61fbea
1 Parent(s): 1ccf9c0

Model save

Browse files
Files changed (2) hide show
  1. README.md +33 -24
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: apache-2.0
3
- base_model: distilbert/distilbert-base-multilingual-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.7557829181494662
29
  - name: Recall
30
  type: recall
31
- value: 0.819980694980695
32
  - name: F1
33
  type: f1
34
- value: 0.7865740740740742
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9568269568269568
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # CNEC2_0_Supertypes_xlm-roberta-large
44
 
45
- This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2049
48
- - Precision: 0.7558
49
- - Recall: 0.8200
50
- - F1: 0.7866
51
- - Accuracy: 0.9568
52
 
53
  ## Model description
54
 
@@ -68,12 +68,12 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 16
72
- - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - lr_scheduler_warmup_ratio: 0.01
77
  - lr_scheduler_warmup_steps: 1000
78
  - num_epochs: 10
79
 
@@ -81,15 +81,24 @@ The following hyperparameters were used during training:
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.7025 | 1.11 | 500 | 0.2950 | 0.5066 | 0.5927 | 0.5463 | 0.9128 |
85
- | 0.2152 | 2.22 | 1000 | 0.2057 | 0.6733 | 0.7539 | 0.7113 | 0.9425 |
86
- | 0.1366 | 3.33 | 1500 | 0.1680 | 0.7228 | 0.7891 | 0.7545 | 0.9525 |
87
- | 0.0849 | 4.44 | 2000 | 0.1710 | 0.7246 | 0.7987 | 0.7599 | 0.9540 |
88
- | 0.0574 | 5.56 | 2500 | 0.1725 | 0.7309 | 0.8166 | 0.7714 | 0.9558 |
89
- | 0.0384 | 6.67 | 3000 | 0.1855 | 0.7327 | 0.8243 | 0.7758 | 0.9554 |
90
- | 0.0292 | 7.78 | 3500 | 0.1944 | 0.7557 | 0.8287 | 0.7905 | 0.9573 |
91
- | 0.0208 | 8.89 | 4000 | 0.2053 | 0.7486 | 0.8118 | 0.7789 | 0.9555 |
92
- | 0.0164 | 10.0 | 4500 | 0.2049 | 0.7558 | 0.8200 | 0.7866 | 0.9568 |
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  ### Framework versions
 
1
  ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8214447978191731
29
  - name: Recall
30
  type: recall
31
+ value: 0.8725868725868726
32
  - name: F1
33
  type: f1
34
+ value: 0.8462438567750995
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9689700130378096
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # CNEC2_0_Supertypes_xlm-roberta-large
44
 
45
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1759
48
+ - Precision: 0.8214
49
+ - Recall: 0.8726
50
+ - F1: 0.8462
51
+ - Accuracy: 0.9690
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_ratio: 0.1
77
  - lr_scheduler_warmup_steps: 1000
78
  - num_epochs: 10
79
 
 
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 0.9224 | 0.56 | 500 | 0.2309 | 0.5594 | 0.6863 | 0.6164 | 0.9358 |
85
+ | 0.2449 | 1.11 | 1000 | 0.1960 | 0.6745 | 0.8142 | 0.7378 | 0.9525 |
86
+ | 0.204 | 1.67 | 1500 | 0.1701 | 0.7256 | 0.8079 | 0.7646 | 0.9571 |
87
+ | 0.1694 | 2.22 | 2000 | 0.1526 | 0.7605 | 0.8567 | 0.8057 | 0.9640 |
88
+ | 0.1392 | 2.78 | 2500 | 0.1607 | 0.7697 | 0.8485 | 0.8072 | 0.9620 |
89
+ | 0.1191 | 3.33 | 3000 | 0.1528 | 0.7969 | 0.8596 | 0.8270 | 0.9646 |
90
+ | 0.1128 | 3.89 | 3500 | 0.1552 | 0.7668 | 0.8711 | 0.8156 | 0.9610 |
91
+ | 0.095 | 4.44 | 4000 | 0.1678 | 0.7658 | 0.8615 | 0.8108 | 0.9632 |
92
+ | 0.0979 | 5.0 | 4500 | 0.1432 | 0.8079 | 0.8625 | 0.8343 | 0.9672 |
93
+ | 0.0764 | 5.56 | 5000 | 0.1548 | 0.8098 | 0.8528 | 0.8307 | 0.9671 |
94
+ | 0.0829 | 6.11 | 5500 | 0.1423 | 0.8128 | 0.8653 | 0.8382 | 0.9672 |
95
+ | 0.0648 | 6.67 | 6000 | 0.1548 | 0.8038 | 0.8760 | 0.8383 | 0.9673 |
96
+ | 0.0529 | 7.22 | 6500 | 0.1653 | 0.8139 | 0.8716 | 0.8418 | 0.9675 |
97
+ | 0.0483 | 7.78 | 7000 | 0.1630 | 0.8186 | 0.8649 | 0.8411 | 0.9680 |
98
+ | 0.0494 | 8.33 | 7500 | 0.1709 | 0.8233 | 0.8682 | 0.8452 | 0.9686 |
99
+ | 0.0389 | 8.89 | 8000 | 0.1757 | 0.8211 | 0.8726 | 0.8460 | 0.9687 |
100
+ | 0.0356 | 9.44 | 8500 | 0.1740 | 0.8242 | 0.8736 | 0.8482 | 0.9692 |
101
+ | 0.0337 | 10.0 | 9000 | 0.1759 | 0.8214 | 0.8726 | 0.8462 | 0.9690 |
102
 
103
 
104
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f8e2a42c86f93502010626d1f2edc53becd89dc0824cd8295bd34fe6cf2722b
3
  size 2235481556
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26f3437a686a3428d5adec52a846c64dd892fb8244cdb104d06ee74779aa5c8c
3
  size 2235481556