--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8222823635543527 - name: Recall type: recall value: 0.8798262548262549 - name: F1 type: f1 value: 0.8500816041035206 - name: Accuracy type: accuracy value: 0.9681297986382732 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2071 - Precision: 0.8223 - Recall: 0.8798 - F1: 0.8501 - Accuracy: 0.9681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4978 | 2.22 | 500 | 0.1737 | 0.6882 | 0.8118 | 0.7449 | 0.9548 | | 0.149 | 4.44 | 1000 | 0.1573 | 0.7540 | 0.8552 | 0.8014 | 0.9596 | | 0.0796 | 6.67 | 1500 | 0.1530 | 0.8024 | 0.8760 | 0.8376 | 0.9648 | | 0.0473 | 8.89 | 2000 | 0.1539 | 0.8051 | 0.8731 | 0.8377 | 0.9675 | | 0.0272 | 11.11 | 2500 | 0.2028 | 0.7973 | 0.8581 | 0.8266 | 0.9643 | | 0.0154 | 13.33 | 3000 | 0.2071 | 0.8223 | 0.8798 | 0.8501 | 0.9681 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0