--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8074141048824593 - name: Recall type: recall value: 0.861969111969112 - name: F1 type: f1 value: 0.8338001867413634 - name: Accuracy type: accuracy value: 0.9655222367086774 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2044 - Precision: 0.8074 - Recall: 0.8620 - F1: 0.8338 - Accuracy: 0.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5564 | 1.11 | 500 | 0.1852 | 0.6302 | 0.7558 | 0.6873 | 0.9502 | | 0.1786 | 2.22 | 1000 | 0.1552 | 0.6952 | 0.8069 | 0.7469 | 0.9568 | | 0.1219 | 3.33 | 1500 | 0.1665 | 0.6860 | 0.8214 | 0.7476 | 0.9577 | | 0.087 | 4.44 | 2000 | 0.1616 | 0.7572 | 0.8263 | 0.7902 | 0.9595 | | 0.0689 | 5.56 | 2500 | 0.1679 | 0.7670 | 0.8243 | 0.7946 | 0.9616 | | 0.0442 | 6.67 | 3000 | 0.1612 | 0.7346 | 0.8364 | 0.7822 | 0.9631 | | 0.0353 | 7.78 | 3500 | 0.1864 | 0.8099 | 0.8576 | 0.8331 | 0.9653 | | 0.0205 | 8.89 | 4000 | 0.1950 | 0.8026 | 0.8653 | 0.8328 | 0.9654 | | 0.0133 | 10.0 | 4500 | 0.2044 | 0.8074 | 0.8620 | 0.8338 | 0.9655 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0