--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8299725022914757 - name: Recall type: recall value: 0.874034749034749 - name: F1 type: f1 value: 0.8514339445228021 - name: Accuracy type: accuracy value: 0.9687092568448501 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1727 - Precision: 0.8300 - Recall: 0.8740 - F1: 0.8514 - Accuracy: 0.9687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3664 | 0.56 | 500 | 0.1708 | 0.6886 | 0.8132 | 0.7457 | 0.9536 | | 0.1841 | 1.11 | 1000 | 0.1512 | 0.7474 | 0.8470 | 0.7941 | 0.9631 | | 0.1528 | 1.67 | 1500 | 0.1650 | 0.7530 | 0.8181 | 0.7842 | 0.9612 | | 0.1313 | 2.22 | 2000 | 0.1598 | 0.7809 | 0.8687 | 0.8225 | 0.9656 | | 0.1094 | 2.78 | 2500 | 0.1421 | 0.7791 | 0.8475 | 0.8118 | 0.9636 | | 0.0897 | 3.33 | 3000 | 0.1395 | 0.7958 | 0.8634 | 0.8282 | 0.9669 | | 0.0864 | 3.89 | 3500 | 0.1454 | 0.7897 | 0.8789 | 0.8319 | 0.9664 | | 0.0674 | 4.44 | 4000 | 0.1524 | 0.8174 | 0.8663 | 0.8411 | 0.9675 | | 0.0689 | 5.0 | 4500 | 0.1475 | 0.8178 | 0.8687 | 0.8425 | 0.9674 | | 0.05 | 5.56 | 5000 | 0.1628 | 0.8257 | 0.8731 | 0.8487 | 0.9676 | | 0.0521 | 6.11 | 5500 | 0.1614 | 0.8257 | 0.8644 | 0.8446 | 0.9668 | | 0.0409 | 6.67 | 6000 | 0.1648 | 0.8258 | 0.8740 | 0.8492 | 0.9681 | | 0.0345 | 7.22 | 6500 | 0.1684 | 0.8295 | 0.8711 | 0.8498 | 0.9682 | | 0.0302 | 7.78 | 7000 | 0.1727 | 0.8300 | 0.8740 | 0.8514 | 0.9687 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0