--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8447596532702916 - name: Recall type: recall value: 0.8855844692275919 - name: F1 type: f1 value: 0.8646904617866505 - name: Accuracy type: accuracy value: 0.9681587715486021 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1762 - Precision: 0.8448 - Recall: 0.8856 - F1: 0.8647 - Accuracy: 0.9682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2106 | 1.0 | 7193 | 0.2086 | 0.7859 | 0.8203 | 0.8027 | 0.9563 | | 0.1136 | 2.0 | 14386 | 0.1710 | 0.8391 | 0.8678 | 0.8532 | 0.9658 | | 0.0973 | 3.0 | 21579 | 0.1762 | 0.8448 | 0.8856 | 0.8647 | 0.9682 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0