--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8317152103559871 - name: Recall type: recall value: 0.8682432432432432 - name: F1 type: f1 value: 0.8495867768595041 - name: Accuracy type: accuracy value: 0.9680139069969579 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2072 - Precision: 0.8317 - Recall: 0.8682 - F1: 0.8496 - Accuracy: 0.9680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2727 | 1.11 | 500 | 0.1414 | 0.7268 | 0.8012 | 0.7622 | 0.9594 | | 0.1146 | 2.22 | 1000 | 0.1338 | 0.7697 | 0.8581 | 0.8115 | 0.9657 | | 0.0725 | 3.33 | 1500 | 0.1444 | 0.7953 | 0.8625 | 0.8275 | 0.9668 | | 0.0492 | 4.44 | 2000 | 0.1513 | 0.8085 | 0.8760 | 0.8409 | 0.9675 | | 0.0388 | 5.56 | 2500 | 0.1604 | 0.8257 | 0.8731 | 0.8487 | 0.9674 | | 0.0244 | 6.67 | 3000 | 0.1754 | 0.8278 | 0.8629 | 0.8450 | 0.9666 | | 0.0169 | 7.78 | 3500 | 0.1877 | 0.8282 | 0.8653 | 0.8464 | 0.9677 | | 0.0102 | 8.89 | 4000 | 0.1974 | 0.8252 | 0.8634 | 0.8439 | 0.9674 | | 0.0068 | 10.0 | 4500 | 0.2072 | 0.8317 | 0.8682 | 0.8496 | 0.9680 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0