--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.7557829181494662 - name: Recall type: recall value: 0.819980694980695 - name: F1 type: f1 value: 0.7865740740740742 - name: Accuracy type: accuracy value: 0.9568269568269568 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2049 - Precision: 0.7558 - Recall: 0.8200 - F1: 0.7866 - Accuracy: 0.9568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7025 | 1.11 | 500 | 0.2950 | 0.5066 | 0.5927 | 0.5463 | 0.9128 | | 0.2152 | 2.22 | 1000 | 0.2057 | 0.6733 | 0.7539 | 0.7113 | 0.9425 | | 0.1366 | 3.33 | 1500 | 0.1680 | 0.7228 | 0.7891 | 0.7545 | 0.9525 | | 0.0849 | 4.44 | 2000 | 0.1710 | 0.7246 | 0.7987 | 0.7599 | 0.9540 | | 0.0574 | 5.56 | 2500 | 0.1725 | 0.7309 | 0.8166 | 0.7714 | 0.9558 | | 0.0384 | 6.67 | 3000 | 0.1855 | 0.7327 | 0.8243 | 0.7758 | 0.9554 | | 0.0292 | 7.78 | 3500 | 0.1944 | 0.7557 | 0.8287 | 0.7905 | 0.9573 | | 0.0208 | 8.89 | 4000 | 0.2053 | 0.7486 | 0.8118 | 0.7789 | 0.9555 | | 0.0164 | 10.0 | 4500 | 0.2049 | 0.7558 | 0.8200 | 0.7866 | 0.9568 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0