--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8515562649640862 - name: Recall type: recall value: 0.8814539446509707 - name: F1 type: f1 value: 0.8662472092551248 - name: Accuracy type: accuracy value: 0.9700709836303056 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2179 - Precision: 0.8516 - Recall: 0.8815 - F1: 0.8662 - Accuracy: 0.9701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.267 | 1.0 | 7193 | 0.2806 | 0.7707 | 0.8009 | 0.7855 | 0.9525 | | 0.1977 | 2.0 | 14386 | 0.1792 | 0.8151 | 0.8451 | 0.8299 | 0.9616 | | 0.1767 | 3.0 | 21579 | 0.1935 | 0.8293 | 0.8711 | 0.8497 | 0.9662 | | 0.0929 | 4.0 | 28772 | 0.2219 | 0.8382 | 0.8860 | 0.8614 | 0.9677 | | 0.0788 | 5.0 | 35965 | 0.2179 | 0.8516 | 0.8815 | 0.8662 | 0.9701 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0