--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: test args: default metrics: - name: Precision type: precision value: 0.8236658932714617 - name: Recall type: recall value: 0.8751027115858668 - name: F1 type: f1 value: 0.848605577689243 - name: Accuracy type: accuracy value: 0.9646932746336094 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2014 - Precision: 0.8237 - Recall: 0.8751 - F1: 0.8486 - Accuracy: 0.9647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1000 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9082 | 1.11 | 500 | 0.2281 | 0.6024 | 0.7539 | 0.6697 | 0.9424 | | 0.1977 | 2.22 | 1000 | 0.1808 | 0.7211 | 0.8369 | 0.7747 | 0.9544 | | 0.1477 | 3.33 | 1500 | 0.1674 | 0.7716 | 0.8661 | 0.8161 | 0.9612 | | 0.1105 | 4.44 | 2000 | 0.1628 | 0.7860 | 0.8780 | 0.8294 | 0.9633 | | 0.0929 | 5.56 | 2500 | 0.1609 | 0.7982 | 0.8743 | 0.8345 | 0.9629 | | 0.0735 | 6.67 | 3000 | 0.1740 | 0.7901 | 0.8722 | 0.8291 | 0.9625 | | 0.0614 | 7.78 | 3500 | 0.1860 | 0.8027 | 0.8710 | 0.8355 | 0.9641 | | 0.0513 | 8.89 | 4000 | 0.1823 | 0.8038 | 0.8804 | 0.8404 | 0.9633 | | 0.0399 | 10.0 | 4500 | 0.1866 | 0.8103 | 0.8846 | 0.8458 | 0.9639 | | 0.0327 | 11.11 | 5000 | 0.2014 | 0.8237 | 0.8751 | 0.8486 | 0.9647 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0