--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8532910388580491 - name: Recall type: recall value: 0.8888888888888888 - name: F1 type: f1 value: 0.8707262795872951 - name: Accuracy type: accuracy value: 0.9697812545270172 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2032 - Precision: 0.8533 - Recall: 0.8889 - F1: 0.8707 - Accuracy: 0.9698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1913 | 1.0 | 7193 | 0.1739 | 0.7382 | 0.8422 | 0.7868 | 0.9593 | | 0.1663 | 2.0 | 14386 | 0.1877 | 0.7835 | 0.8579 | 0.8190 | 0.9618 | | 0.1395 | 3.0 | 21579 | 0.1784 | 0.8391 | 0.8786 | 0.8584 | 0.9679 | | 0.0647 | 4.0 | 28772 | 0.1968 | 0.8314 | 0.8802 | 0.8551 | 0.9666 | | 0.0322 | 5.0 | 35965 | 0.2032 | 0.8533 | 0.8889 | 0.8707 | 0.9698 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0