--- license: cc-by-nc-sa-4.0 base_model: ufal/robeczech-base tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_2_0_ext_robeczech-base results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8633093525179856 - name: Recall type: recall value: 0.8933002481389578 - name: F1 type: f1 value: 0.8780487804878048 - name: Accuracy type: accuracy value: 0.9703429462197973 --- # CNEC_2_0_ext_robeczech-base This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1663 - Precision: 0.8633 - Recall: 0.8933 - F1: 0.8780 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2593 | 4.46 | 1000 | 0.1653 | 0.8195 | 0.8223 | 0.8209 | 0.9593 | | 0.1209 | 8.93 | 2000 | 0.1355 | 0.8441 | 0.8789 | 0.8612 | 0.9679 | | 0.0763 | 13.39 | 3000 | 0.1310 | 0.8591 | 0.8893 | 0.8739 | 0.9709 | | 0.0539 | 17.86 | 4000 | 0.1383 | 0.8656 | 0.8953 | 0.8802 | 0.9719 | | 0.0403 | 22.32 | 5000 | 0.1392 | 0.8626 | 0.8943 | 0.8782 | 0.9710 | | 0.0316 | 26.79 | 6000 | 0.1539 | 0.8606 | 0.8948 | 0.8774 | 0.9712 | | 0.0254 | 31.25 | 7000 | 0.1552 | 0.8660 | 0.8913 | 0.8785 | 0.9706 | | 0.0211 | 35.71 | 8000 | 0.1621 | 0.8658 | 0.8968 | 0.8810 | 0.9701 | | 0.0183 | 40.18 | 9000 | 0.1593 | 0.8688 | 0.8973 | 0.8828 | 0.9718 | | 0.0161 | 44.64 | 10000 | 0.1638 | 0.8653 | 0.8993 | 0.8820 | 0.9714 | | 0.015 | 49.11 | 11000 | 0.1663 | 0.8633 | 0.8933 | 0.8780 | 0.9703 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0