stulcrad commited on
Commit
1dd9848
·
verified ·
1 Parent(s): b7a8868

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8556554661618552
29
  - name: Recall
30
  type: recall
31
- value: 0.8972704714640198
32
  - name: F1
33
  type: f1
34
- value: 0.8759689922480619
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9759953161592506
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1541
48
- - Precision: 0.8557
49
- - Recall: 0.8973
50
- - F1: 0.8760
51
- - Accuracy: 0.9760
52
 
53
  ## Model description
54
 
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.2518 | 1.12 | 500 | 0.1312 | 0.7219 | 0.8427 | 0.7777 | 0.9649 |
83
- | 0.0996 | 2.24 | 1000 | 0.1222 | 0.8003 | 0.8511 | 0.8249 | 0.9677 |
84
- | 0.0652 | 3.36 | 1500 | 0.1259 | 0.8137 | 0.8734 | 0.8425 | 0.9730 |
85
- | 0.0421 | 4.47 | 2000 | 0.1293 | 0.8306 | 0.8859 | 0.8573 | 0.9739 |
86
- | 0.0277 | 5.59 | 2500 | 0.1519 | 0.8320 | 0.8799 | 0.8553 | 0.9742 |
87
- | 0.0169 | 6.71 | 3000 | 0.1342 | 0.8516 | 0.8968 | 0.8736 | 0.9756 |
88
- | 0.0116 | 7.83 | 3500 | 0.1496 | 0.8540 | 0.8973 | 0.8751 | 0.9760 |
89
- | 0.0065 | 8.95 | 4000 | 0.1541 | 0.8557 | 0.8973 | 0.8760 | 0.9760 |
90
 
91
 
92
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8566729323308271
29
  - name: Recall
30
  type: recall
31
+ value: 0.9047146401985111
32
  - name: F1
33
  type: f1
34
+ value: 0.8800386193579531
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9771662763466042
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1471
48
+ - Precision: 0.8567
49
+ - Recall: 0.9047
50
+ - F1: 0.8800
51
+ - Accuracy: 0.9772
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2836 | 1.12 | 500 | 0.1341 | 0.7486 | 0.8467 | 0.7946 | 0.9649 |
83
+ | 0.116 | 2.24 | 1000 | 0.1048 | 0.7866 | 0.8655 | 0.8242 | 0.9734 |
84
+ | 0.0832 | 3.36 | 1500 | 0.1066 | 0.7967 | 0.8734 | 0.8333 | 0.9746 |
85
+ | 0.0577 | 4.47 | 2000 | 0.1112 | 0.8408 | 0.8834 | 0.8616 | 0.9753 |
86
+ | 0.0445 | 5.59 | 2500 | 0.1378 | 0.8384 | 0.8883 | 0.8627 | 0.9751 |
87
+ | 0.0337 | 6.71 | 3000 | 0.1272 | 0.8505 | 0.8978 | 0.8735 | 0.9770 |
88
+ | 0.025 | 7.83 | 3500 | 0.1447 | 0.8462 | 0.9007 | 0.8726 | 0.9760 |
89
+ | 0.0191 | 8.95 | 4000 | 0.1471 | 0.8567 | 0.9047 | 0.8800 | 0.9772 |
90
 
91
 
92
  ### Framework versions
runs/Feb26_21-46-14_n29/events.out.tfevents.1708980375.n29.40136.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c860c7fb764dae18ec784b2f1d78a7ef8925dc551910a09f7ec523e466842ba
3
- size 9906
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43e66b1e6184ed86aadd0c3aab401d681278b0d836dd22afc4c53c690064810b
3
+ size 10260