Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
|
91 |
|
92 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8566729323308271
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9047146401985111
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8800386193579531
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9771662763466042
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1471
|
48 |
+
- Precision: 0.8567
|
49 |
+
- Recall: 0.9047
|
50 |
+
- F1: 0.8800
|
51 |
+
- Accuracy: 0.9772
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2836 | 1.12 | 500 | 0.1341 | 0.7486 | 0.8467 | 0.7946 | 0.9649 |
|
83 |
+
| 0.116 | 2.24 | 1000 | 0.1048 | 0.7866 | 0.8655 | 0.8242 | 0.9734 |
|
84 |
+
| 0.0832 | 3.36 | 1500 | 0.1066 | 0.7967 | 0.8734 | 0.8333 | 0.9746 |
|
85 |
+
| 0.0577 | 4.47 | 2000 | 0.1112 | 0.8408 | 0.8834 | 0.8616 | 0.9753 |
|
86 |
+
| 0.0445 | 5.59 | 2500 | 0.1378 | 0.8384 | 0.8883 | 0.8627 | 0.9751 |
|
87 |
+
| 0.0337 | 6.71 | 3000 | 0.1272 | 0.8505 | 0.8978 | 0.8735 | 0.9770 |
|
88 |
+
| 0.025 | 7.83 | 3500 | 0.1447 | 0.8462 | 0.9007 | 0.8726 | 0.9760 |
|
89 |
+
| 0.0191 | 8.95 | 4000 | 0.1471 | 0.8567 | 0.9047 | 0.8800 | 0.9772 |
|
90 |
|
91 |
|
92 |
### Framework versions
|
runs/Feb26_21-46-14_n29/events.out.tfevents.1708980375.n29.40136.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43e66b1e6184ed86aadd0c3aab401d681278b0d836dd22afc4c53c690064810b
|
3 |
+
size 10260
|