Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,42 +68,21 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
-
| Training Loss | Epoch | Step
|
81 |
-
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.1336 | 1.4 | 2500 | 0.1233 | 0.7729 | 0.8447 | 0.8072 | 0.9688 |
|
87 |
-
| 0.1212 | 1.68 | 3000 | 0.1308 | 0.7989 | 0.8655 | 0.8309 | 0.9714 |
|
88 |
-
| 0.1268 | 1.96 | 3500 | 0.1298 | 0.7867 | 0.8660 | 0.8245 | 0.9718 |
|
89 |
-
| 0.0979 | 2.24 | 4000 | 0.1142 | 0.8111 | 0.8844 | 0.8462 | 0.9740 |
|
90 |
-
| 0.1 | 2.52 | 4500 | 0.1316 | 0.8159 | 0.8799 | 0.8467 | 0.9724 |
|
91 |
-
| 0.0971 | 2.8 | 5000 | 0.1334 | 0.8228 | 0.8849 | 0.8527 | 0.9737 |
|
92 |
-
| 0.0912 | 3.08 | 5500 | 0.1348 | 0.8277 | 0.8844 | 0.8551 | 0.9755 |
|
93 |
-
| 0.0661 | 3.36 | 6000 | 0.1349 | 0.8213 | 0.8849 | 0.8519 | 0.9747 |
|
94 |
-
| 0.0672 | 3.64 | 6500 | 0.1423 | 0.8301 | 0.8898 | 0.8589 | 0.9735 |
|
95 |
-
| 0.0721 | 3.92 | 7000 | 0.1242 | 0.8402 | 0.8923 | 0.8655 | 0.9764 |
|
96 |
-
| 0.0703 | 4.2 | 7500 | 0.1351 | 0.8204 | 0.8794 | 0.8489 | 0.9737 |
|
97 |
-
| 0.0503 | 4.48 | 8000 | 0.1625 | 0.8273 | 0.8918 | 0.8584 | 0.9747 |
|
98 |
-
| 0.054 | 4.76 | 8500 | 0.1556 | 0.8276 | 0.8839 | 0.8548 | 0.9745 |
|
99 |
-
| 0.0452 | 5.04 | 9000 | 0.1454 | 0.8360 | 0.8903 | 0.8623 | 0.9756 |
|
100 |
-
| 0.0392 | 5.32 | 9500 | 0.1548 | 0.8406 | 0.8923 | 0.8657 | 0.9769 |
|
101 |
-
| 0.0357 | 5.6 | 10000 | 0.1473 | 0.8446 | 0.8953 | 0.8692 | 0.9770 |
|
102 |
-
| 0.0389 | 5.88 | 10500 | 0.1463 | 0.8494 | 0.8983 | 0.8731 | 0.9768 |
|
103 |
-
| 0.0331 | 6.16 | 11000 | 0.1530 | 0.8503 | 0.8938 | 0.8715 | 0.9769 |
|
104 |
-
| 0.0273 | 6.44 | 11500 | 0.1553 | 0.8483 | 0.8933 | 0.8702 | 0.9770 |
|
105 |
-
| 0.0315 | 6.72 | 12000 | 0.1537 | 0.8499 | 0.8938 | 0.8713 | 0.9768 |
|
106 |
-
| 0.0274 | 7.0 | 12500 | 0.1540 | 0.8481 | 0.8923 | 0.8696 | 0.9769 |
|
107 |
|
108 |
|
109 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.862624348649929
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9037220843672457
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8826951042171596
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9778103044496487
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1070
|
48 |
+
- Precision: 0.8626
|
49 |
+
- Recall: 0.9037
|
50 |
+
- F1: 0.8827
|
51 |
+
- Accuracy: 0.9778
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.3643 | 1.12 | 500 | 0.1506 | 0.7225 | 0.8452 | 0.7790 | 0.9628 |
|
83 |
+
| 0.1213 | 2.24 | 1000 | 0.1073 | 0.7944 | 0.8725 | 0.8316 | 0.9723 |
|
84 |
+
| 0.0783 | 3.36 | 1500 | 0.1024 | 0.8424 | 0.8938 | 0.8673 | 0.9763 |
|
85 |
+
| 0.0562 | 4.47 | 2000 | 0.1070 | 0.8626 | 0.9037 | 0.8827 | 0.9778 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235473356
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15da1a3fc3b900fb76b48615a9e4b2063a76d4a59297830770856fb81c1826f
|
3 |
size 2235473356
|
runs/Feb22_21-02-11_n32/events.out.tfevents.1708632134.n32.1130375.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e4427080dbf109ea1d1791d184e1d9cb506f9e4f36d930273d18479da704d40
|
3 |
+
size 7746
|