Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
|
91 |
|
92 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8556554661618552
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8972704714640198
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8759689922480619
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9759953161592506
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1541
|
48 |
+
- Precision: 0.8557
|
49 |
+
- Recall: 0.8973
|
50 |
+
- F1: 0.8760
|
51 |
+
- Accuracy: 0.9760
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2518 | 1.12 | 500 | 0.1312 | 0.7219 | 0.8427 | 0.7777 | 0.9649 |
|
83 |
+
| 0.0996 | 2.24 | 1000 | 0.1222 | 0.8003 | 0.8511 | 0.8249 | 0.9677 |
|
84 |
+
| 0.0652 | 3.36 | 1500 | 0.1259 | 0.8137 | 0.8734 | 0.8425 | 0.9730 |
|
85 |
+
| 0.0421 | 4.47 | 2000 | 0.1293 | 0.8306 | 0.8859 | 0.8573 | 0.9739 |
|
86 |
+
| 0.0277 | 5.59 | 2500 | 0.1519 | 0.8320 | 0.8799 | 0.8553 | 0.9742 |
|
87 |
+
| 0.0169 | 6.71 | 3000 | 0.1342 | 0.8516 | 0.8968 | 0.8736 | 0.9756 |
|
88 |
+
| 0.0116 | 7.83 | 3500 | 0.1496 | 0.8540 | 0.8973 | 0.8751 | 0.9760 |
|
89 |
+
| 0.0065 | 8.95 | 4000 | 0.1541 | 0.8557 | 0.8973 | 0.8760 | 0.9760 |
|
90 |
|
91 |
|
92 |
### Framework versions
|
runs/Feb26_20-03-36_n29/events.out.tfevents.1708974220.n29.36067.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27769d0dc6f4fdd8291f77804c6d4c453dbf6dc02070079507a06c787f59339d
|
3 |
+
size 10259
|