stulcrad commited on
Commit
c0e6184
1 Parent(s): 68eec5f

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8493919550982226
29
  - name: Recall
30
  type: recall
31
- value: 0.9012406947890819
32
  - name: F1
33
  type: f1
34
- value: 0.8745485191427884
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.977195550351288
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1518
48
- - Precision: 0.8494
49
- - Recall: 0.9012
50
- - F1: 0.8745
51
- - Accuracy: 0.9772
52
 
53
  ## Model description
54
 
@@ -79,18 +79,18 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.3244 | 1.12 | 500 | 0.1364 | 0.7215 | 0.8462 | 0.7789 | 0.9654 |
83
- | 0.1375 | 2.24 | 1000 | 0.1184 | 0.7865 | 0.8610 | 0.8221 | 0.9723 |
84
- | 0.097 | 3.36 | 1500 | 0.1156 | 0.7943 | 0.8680 | 0.8295 | 0.9737 |
85
- | 0.0754 | 4.47 | 2000 | 0.1192 | 0.7978 | 0.8794 | 0.8366 | 0.9738 |
86
- | 0.0619 | 5.59 | 2500 | 0.1185 | 0.8168 | 0.8849 | 0.8495 | 0.9751 |
87
- | 0.0524 | 6.71 | 3000 | 0.1291 | 0.8237 | 0.8834 | 0.8525 | 0.9752 |
88
- | 0.0417 | 7.83 | 3500 | 0.1251 | 0.8405 | 0.8968 | 0.8677 | 0.9776 |
89
- | 0.0342 | 8.95 | 4000 | 0.1197 | 0.8280 | 0.8913 | 0.8585 | 0.9771 |
90
- | 0.0274 | 10.07 | 4500 | 0.1434 | 0.8415 | 0.8983 | 0.8689 | 0.9762 |
91
- | 0.0233 | 11.19 | 5000 | 0.1527 | 0.8547 | 0.8993 | 0.8764 | 0.9757 |
92
- | 0.0196 | 12.3 | 5500 | 0.1566 | 0.8531 | 0.9022 | 0.8770 | 0.9766 |
93
- | 0.0169 | 13.42 | 6000 | 0.1518 | 0.8494 | 0.9012 | 0.8745 | 0.9772 |
94
 
95
 
96
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8495533615420781
29
  - name: Recall
30
  type: recall
31
+ value: 0.896774193548387
32
  - name: F1
33
  type: f1
34
+ value: 0.8725253500724288
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9753512880562061
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1667
48
+ - Precision: 0.8496
49
+ - Recall: 0.8968
50
+ - F1: 0.8725
51
+ - Accuracy: 0.9754
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.4608 | 1.12 | 500 | 0.1709 | 0.6984 | 0.8089 | 0.7496 | 0.9579 |
83
+ | 0.1492 | 2.24 | 1000 | 0.1188 | 0.7702 | 0.8467 | 0.8066 | 0.9690 |
84
+ | 0.0993 | 3.36 | 1500 | 0.1077 | 0.8123 | 0.8804 | 0.8450 | 0.9739 |
85
+ | 0.0724 | 4.47 | 2000 | 0.1113 | 0.8156 | 0.8824 | 0.8477 | 0.9759 |
86
+ | 0.0603 | 5.59 | 2500 | 0.1337 | 0.8234 | 0.8864 | 0.8537 | 0.9739 |
87
+ | 0.045 | 6.71 | 3000 | 0.1386 | 0.8446 | 0.8958 | 0.8695 | 0.9756 |
88
+ | 0.0358 | 7.83 | 3500 | 0.1371 | 0.8449 | 0.8978 | 0.8705 | 0.9756 |
89
+ | 0.0284 | 8.95 | 4000 | 0.1364 | 0.8390 | 0.8998 | 0.8683 | 0.9756 |
90
+ | 0.0229 | 10.07 | 4500 | 0.1479 | 0.8328 | 0.8873 | 0.8592 | 0.9734 |
91
+ | 0.0172 | 11.19 | 5000 | 0.1658 | 0.8446 | 0.8958 | 0.8695 | 0.9754 |
92
+ | 0.0146 | 12.3 | 5500 | 0.1650 | 0.8448 | 0.8968 | 0.8700 | 0.9749 |
93
+ | 0.0126 | 13.42 | 6000 | 0.1667 | 0.8496 | 0.8968 | 0.8725 | 0.9754 |
94
 
95
 
96
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7ff68aa27e4c0c1b7cc28092fad7ccae2e0364917b28f99eb449667b745e66a
3
  size 2235473356
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c7f4586cc1d38be0941d7e0f253c1b5fe9a9731b470b50de56752e598c03f17
3
  size 2235473356
runs/Feb26_16-27-31_n29/events.out.tfevents.1708961253.n29.26646.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01ecd57c7726fcd8d5646abd39d06d20cec0580e2586a156931a1525e185096d
3
- size 12426
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23242b1068022fab90c7e2f42a3195d4c0ee12bb071d527bde211cb878d1dbc0
3
+ size 12780