Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,16 +73,18 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8625413320736892
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9062034739454095
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8838334946757018
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9776053864168618
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1207
|
48 |
+
- Precision: 0.8625
|
49 |
+
- Recall: 0.9062
|
50 |
+
- F1: 0.8838
|
51 |
+
- Accuracy: 0.9776
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 7
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2631 | 1.12 | 500 | 0.1266 | 0.7607 | 0.8660 | 0.8099 | 0.9688 |
|
83 |
+
| 0.1089 | 2.24 | 1000 | 0.1050 | 0.8199 | 0.8854 | 0.8513 | 0.9743 |
|
84 |
+
| 0.0719 | 3.36 | 1500 | 0.1008 | 0.8400 | 0.8913 | 0.8649 | 0.9768 |
|
85 |
+
| 0.0512 | 4.47 | 2000 | 0.1027 | 0.8394 | 0.8923 | 0.8650 | 0.9775 |
|
86 |
+
| 0.0381 | 5.59 | 2500 | 0.1169 | 0.8588 | 0.9027 | 0.8802 | 0.9777 |
|
87 |
+
| 0.0265 | 6.71 | 3000 | 0.1207 | 0.8625 | 0.9062 | 0.8838 | 0.9776 |
|
88 |
|
89 |
|
90 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235473356
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37afa7355df34c7cedc1b8b02dc081963da1b3988a04de871ee8925b082a7db1
|
3 |
size 2235473356
|
runs/Feb26_14-08-21_n29/events.out.tfevents.1708952902.n29.22263.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05bc102c2b9feaf0ac7cff6db1acdf1542baf88191aec35d2615c63e51724649
|
3 |
+
size 9004
|