--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8556554661618552 - name: Recall type: recall value: 0.8972704714640198 - name: F1 type: f1 value: 0.8759689922480619 - name: Accuracy type: accuracy value: 0.9759953161592506 --- # CNEC_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1541 - Precision: 0.8557 - Recall: 0.8973 - F1: 0.8760 - Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2518 | 1.12 | 500 | 0.1312 | 0.7219 | 0.8427 | 0.7777 | 0.9649 | | 0.0996 | 2.24 | 1000 | 0.1222 | 0.8003 | 0.8511 | 0.8249 | 0.9677 | | 0.0652 | 3.36 | 1500 | 0.1259 | 0.8137 | 0.8734 | 0.8425 | 0.9730 | | 0.0421 | 4.47 | 2000 | 0.1293 | 0.8306 | 0.8859 | 0.8573 | 0.9739 | | 0.0277 | 5.59 | 2500 | 0.1519 | 0.8320 | 0.8799 | 0.8553 | 0.9742 | | 0.0169 | 6.71 | 3000 | 0.1342 | 0.8516 | 0.8968 | 0.8736 | 0.9756 | | 0.0116 | 7.83 | 3500 | 0.1496 | 0.8540 | 0.8973 | 0.8751 | 0.9760 | | 0.0065 | 8.95 | 4000 | 0.1541 | 0.8557 | 0.8973 | 0.8760 | 0.9760 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0