--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8526912181303116 - name: Recall type: recall value: 0.8962779156327544 - name: F1 type: f1 value: 0.8739414468908783 - name: Accuracy type: accuracy value: 0.9765807962529274 --- # CNEC_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1428 - Precision: 0.8527 - Recall: 0.8963 - F1: 0.8739 - Accuracy: 0.9766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2508 | 1.12 | 500 | 0.1431 | 0.7569 | 0.8481 | 0.7999 | 0.9672 | | 0.1103 | 2.24 | 1000 | 0.1169 | 0.7717 | 0.8541 | 0.8108 | 0.9704 | | 0.0731 | 3.36 | 1500 | 0.1134 | 0.8066 | 0.8715 | 0.8378 | 0.9749 | | 0.0527 | 4.47 | 2000 | 0.1137 | 0.8360 | 0.8928 | 0.8635 | 0.9767 | | 0.039 | 5.59 | 2500 | 0.1248 | 0.8364 | 0.8854 | 0.8602 | 0.9755 | | 0.0265 | 6.71 | 3000 | 0.1252 | 0.8427 | 0.8878 | 0.8647 | 0.9769 | | 0.0206 | 7.83 | 3500 | 0.1424 | 0.8473 | 0.8953 | 0.8707 | 0.9757 | | 0.0148 | 8.95 | 4000 | 0.1428 | 0.8527 | 0.8963 | 0.8739 | 0.9766 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0