--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8548310328415041 - name: Recall type: recall value: 0.8913151364764268 - name: F1 type: f1 value: 0.8726919339164239 - name: Accuracy type: accuracy value: 0.9753512880562061 --- # CNEC_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1540 - Precision: 0.8548 - Recall: 0.8913 - F1: 0.8727 - Accuracy: 0.9754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2864 | 0.56 | 500 | 0.1328 | 0.7015 | 0.8119 | 0.7527 | 0.9629 | | 0.13 | 1.12 | 1000 | 0.1221 | 0.7836 | 0.8734 | 0.8261 | 0.9701 | | 0.0972 | 1.68 | 1500 | 0.1140 | 0.7836 | 0.8610 | 0.8205 | 0.9710 | | 0.0807 | 2.24 | 2000 | 0.1244 | 0.8032 | 0.8730 | 0.8366 | 0.9730 | | 0.0626 | 2.8 | 2500 | 0.1135 | 0.8104 | 0.8844 | 0.8458 | 0.9755 | | 0.0451 | 3.36 | 3000 | 0.1371 | 0.8305 | 0.8824 | 0.8556 | 0.9733 | | 0.0397 | 3.92 | 3500 | 0.1251 | 0.8307 | 0.8814 | 0.8553 | 0.9736 | | 0.0244 | 4.48 | 4000 | 0.1441 | 0.8370 | 0.8794 | 0.8577 | 0.9740 | | 0.0257 | 5.04 | 4500 | 0.1319 | 0.8541 | 0.8888 | 0.8711 | 0.9759 | | 0.0164 | 5.6 | 5000 | 0.1465 | 0.8421 | 0.8868 | 0.8639 | 0.9754 | | 0.013 | 6.16 | 5500 | 0.1494 | 0.8473 | 0.8868 | 0.8666 | 0.9751 | | 0.0108 | 6.72 | 6000 | 0.1540 | 0.8548 | 0.8913 | 0.8727 | 0.9754 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0