stupidog04
commited on
Commit
•
4a87051
1
Parent(s):
702d195
Update pipeline.py
Browse files- pipeline.py +15 -30
pipeline.py
CHANGED
@@ -1,34 +1,21 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
|
4 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
5 |
-
from pyctcdecode import Alphabet, BeamSearchDecoderCTC
|
6 |
|
7 |
class PreTrainedPipeline():
|
8 |
def __init__(self, path):
|
9 |
"""
|
10 |
Initialize model
|
11 |
"""
|
12 |
-
|
13 |
-
self.
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
vocab_list[3] = "⁇"
|
23 |
-
|
24 |
-
# convert space character representation
|
25 |
-
vocab_list[4] = " "
|
26 |
-
|
27 |
-
alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=0)
|
28 |
-
|
29 |
-
self.decoder = BeamSearchDecoderCTC(alphabet)
|
30 |
-
self.sampling_rate = 16000
|
31 |
-
|
32 |
|
33 |
def __call__(self, inputs)-> Dict[str, str]:
|
34 |
"""
|
@@ -39,8 +26,6 @@ class PreTrainedPipeline():
|
|
39 |
A :obj:`dict`:. The object return should be liked {"text": "XXX"} containing
|
40 |
the detected text from the input audio.
|
41 |
"""
|
42 |
-
input_values = self.processor(inputs, return_tensors="pt", sampling_rate=self.sampling_rate).input_values # Batch size 1
|
43 |
-
logits = self.model(input_values).logits.cpu().detach().numpy()[0]
|
44 |
-
return
|
45 |
-
"text": self.decoder.decode(logits)
|
46 |
-
}
|
|
|
1 |
+
from torchvision import transforms
|
2 |
+
from pair_classification import PairClassificationPipeline
|
|
|
|
|
|
|
3 |
|
4 |
class PreTrainedPipeline():
|
5 |
def __init__(self, path):
|
6 |
"""
|
7 |
Initialize model
|
8 |
"""
|
9 |
+
model_flag = 'google/vit-base-patch16-224-in21k'
|
10 |
+
# self.processor = feature_extractor = ViTFeatureExtractor.from_pretrained(model_flag)
|
11 |
+
self.pipe = pipeline("pair-classification", model=model_flag , feature_extractor=model_flag ,
|
12 |
+
model_kwargs={'num_labels':len(label2id),
|
13 |
+
'label2id':label2id,
|
14 |
+
'id2label':id2label,
|
15 |
+
'num_channels':6,
|
16 |
+
'ignore_mismatched_sizes': True })
|
17 |
+
self.model = self.pipe.model.from_pretrained(path)
|
18 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def __call__(self, inputs)-> Dict[str, str]:
|
21 |
"""
|
|
|
26 |
A :obj:`dict`:. The object return should be liked {"text": "XXX"} containing
|
27 |
the detected text from the input audio.
|
28 |
"""
|
29 |
+
# input_values = self.processor(inputs, return_tensors="pt", sampling_rate=self.sampling_rate).input_values # Batch size 1
|
30 |
+
# logits = self.model(input_values).logits.cpu().detach().numpy()[0]
|
31 |
+
return self.pipe(inputs)
|
|
|
|