from torchvision import transforms from transformers import ImageClassificationPipeline import torch class PairClassificationPipeline(ImageClassificationPipeline): pipe_to_tensor = transforms.ToTensor() pipe_to_pil = transforms.ToPILImage() def preprocess(self, image): left_image, right_image = self.horizontal_split_image(image) model_inputs = self.extract_split_feature(left_image, right_image) # model_inputs = super().preprocess(image) # print(model_inputs['pixel_values'].shape) return model_inputs def horizontal_split_image(self, image): # image = image.resize((448,224)) w, h = image.size half_w = w//2 left_image = image.crop([0,0,half_w,h]) right_image = image.crop([half_w,0,2*half_w,h]) return left_image, right_image def extract_split_feature(self, left_image, right_image): model_inputs = self.feature_extractor(images=left_image, return_tensors=self.framework) right_inputs = self.feature_extractor(images=right_image, return_tensors=self.framework) model_inputs['pixel_values'] = torch.cat([model_inputs['pixel_values'],right_inputs['pixel_values']], dim=1) return model_inputs