{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7daf26ecdd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713579639560064274, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPa3jxIg6y6ZsUntEzNqa8QBgy6aiugMwAAgD8AAIA/zTyFvAm4Zz6Qf5+7i9JbvnOcxLycUjS8AAAAAAAAAACaEdW8KVAzumJMNjTvwIItrCqBujDep7MAAIA/AACAP81OdjyP5iO6Mn9burR5Gba9E906IcCCOQAAgD8AAIA/WtiCvY9aMbpTY9o1V6n1MEUPCjv9r/u0AACAPwAAgD/m92a9roagP2AdUL5cvAK/rKN9vfpnzr0AAAAAAAAAABKEpL6Oa00/9jqoPZQjh75un4u+yPVUPgAAAAAAAAAAzc3FvByrAj6+Rcq7Yi4GvkfVk7v/xkc9AAAAAAAAAADNvji9GrFmP3gRgb1S3OS+LQLhvLY9PLwAAAAAAAAAAIB3Ar0KL1S7WqfRvIL+pTzXBoG8kJWuOgAAgD8AAIA/ykKbvmoVMT/6hBo+NhauvgBxyLx7lDM9AAAAAAAAAAAai4e9KQwXugrMiDptgn41kvz3OmJTnrkAAAAAAACAP7NtO73bmZk+xt94vHMWgb5AFlu87lYsPQAAAAAAAAAAbTFUPo6FYz9Us488TMO5vrP5hj7Grwm+AAAAAAAAAABmwIs9w0FsuuqM7rZRU8ixyBVZOlopDDYAAIA/AACAP/OD9b3I2ok+JokZPnZ3lr4P+QI9QyxYPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRFfrKNhmaMAWyUTegDjAF0lEdAlCNEAT7EYXV9lChoBkdAb7GiqyWzGGgHTbQBaAhHQJQmx73PAwh1fZQoaAZHQGgq99Ujs2NoB03oA2gIR0CUJz8TBZZCdX2UKGgGR0BwDNu3trsTaAdNQQFoCEdAlCnvVI7NjnV9lChoBkdAcGtb0OEuhGgHTXQBaAhHQJQrMMqjJuF1fZQoaAZHQGSy3CKrJbNoB03oA2gIR0CUK6TH80k4dX2UKGgGR0BksxIe5nUUaAdN6ANoCEdAlC5WS+xnnXV9lChoBkdAbKtEsJ6Y3WgHTZgBaAhHQJQu7r8iwB51fZQoaAZHQGbr50KZ2IRoB03oA2gIR0CUL6hsZYPodX2UKGgGR0BntPJRwZO0aAdN6ANoCEdAlDJfgvUSZnV9lChoBkdAYrTDfFaStGgHTegDaAhHQJQzidMCcPR1fZQoaAZHQHGZhl6JIlNoB00wAWgIR0CUNJKB/ZuidX2UKGgGR0Bwr7C53C9AaAdNOwJoCEdAlDhA2/BWP3V9lChoBkdAcrMcvM8oyGgHTVEBaAhHQJQ4d74SHuZ1fZQoaAZHQG9LVTzd1uBoB03YAWgIR0CUOPSJ0nw5dX2UKGgGR0BO2CngpBomaAdLxWgIR0CUOrcJdB0IdX2UKGgGR0BwshthuwX7aAdNQgFoCEdAlD0RZEDyOXV9lChoBkdAcOR2eQMhHWgHTQkBaAhHQJQ/IGX5WR11fZQoaAZHQF/xzzmOlwdoB03oA2gIR0CUQOg7YChfdX2UKGgGR0BxdulpGnXNaAdNLwFoCEdAlEHnVoYek3V9lChoBkdAcWdXFLnLaGgHTdcDaAhHQJRDqF8G9pR1fZQoaAZHQHCA72QGOdZoB01xAmgIR0CUWXnIyTIOdX2UKGgGR0BxCh5Z8rqdaAdNdQFoCEdAlF7T+irT6XV9lChoBkdARTxGe+VTrGgHS/ZoCEdAlGM8B+4LC3V9lChoBkdAZStgWJrLyWgHTegDaAhHQJRlWmHgxah1fZQoaAZHQE5VGxUvPC5oB0vraAhHQJRl6L2pQ1t1fZQoaAZHQHH6Ty8SPENoB01yA2gIR0CUZi9Nvfj0dX2UKGgGR0Bwa7bBXS0CaAdNXAFoCEdAlGY7xmTTv3V9lChoBkdAbuSUFjd56mgHTS4DaAhHQJRmq8nNPgx1fZQoaAZHQHCeWxt52QpoB03UA2gIR0CUZsC9RJmNdX2UKGgGR0BymQi4axX5aAdNBAFoCEdAlGkeEqUeMnV9lChoBkdAca5HfuTibWgHTVoDaAhHQJRqfIEKVpt1fZQoaAZHQHGidw3o9s9oB00OAWgIR0CUbII3BHkMdX2UKGgGR0BxNZ29tdiVaAdN4QFoCEdAlG4nB+F10XV9lChoBkdAcZH34Kx9omgHTbYCaAhHQJRwYnjQzDZ1fZQoaAZHQGWV6Pjn3cpoB03oA2gIR0CUcSHPNVzZdX2UKGgGR0ByNH/HYHxCaAdNQQNoCEdAlHQqrilzl3V9lChoBkdAcSve05U96mgHTU0BaAhHQJR0u3UhFE11fZQoaAZHQHJisjRlYlpoB02TAWgIR0CUdpeTmnwYdX2UKGgGR0BtjQtDlYEGaAdNiQFoCEdAlHeB91EE1XV9lChoBkdAR70dPtUn5WgHS/hoCEdAlHeNbPhQ33V9lChoBkdAcdK5EMLF42gHTUQBaAhHQJR4mc7Qswt1fZQoaAZHQHNmSZv1lGxoB00OAWgIR0CUef/+85CGdX2UKGgGR0BqfMLa24NJaAdN6ANoCEdAlHtxBNVR13V9lChoBkdAcRmIXCTEBWgHTf8BaAhHQJR7uF36hxp1fZQoaAZHQHBU9wrDqGFoB01QAWgIR0CUf/oS+QEIdX2UKGgGR0BhRJlQMx46aAdN6ANoCEdAlIBaI3zcynV9lChoBkdAbOoi8Fpwj2gHTSoCaAhHQJSBaCiAUcp1fZQoaAZHQG7UTdUKiPBoB01DAWgIR0CUgtHJtBOYdX2UKGgGR0BuvqJ40Mw2aAdNZwFoCEdAlIWMIRh+fHV9lChoBkdAbewXJHRTj2gHTRsBaAhHQJSGPag26091fZQoaAZHQG2HodU83ddoB01BA2gIR0CUiJIKtxMndX2UKGgGR0ByA1oh6jWTaAdNjQFoCEdAlIj13MY/FHV9lChoBkdAcDP2ETQE6mgHTSQDaAhHQJSdsvqTr3V1fZQoaAZHQG7DP+wTufFoB000A2gIR0CUng1LamGedX2UKGgGR0Byiczi0fHQaAdNtQFoCEdAlJ8+WrwOOXV9lChoBkdATaC86FM7EGgHS95oCEdAlJ99HUc4pHV9lChoBkdAcWSOvt+kQGgHTY8BaAhHQJSgKLehwl11fZQoaAZHQHCsHPNVzZJoB01yAWgIR0CUoHJVsDW9dX2UKGgGR0BypT2rXDm9aAdNlAFoCEdAlKH/EGZ/kXV9lChoBkdAcJlp2ECeVmgHTTsBaAhHQJSiSSq2jO91fZQoaAZHQHHbdpmEoORoB03qAmgIR0CUpOhOxjaxdX2UKGgGR0BwaG6pYLb6aAdNjAFoCEdAlKT5zT4L1HV9lChoBkdAcF09ehPCVWgHTVoBaAhHQJSnB1/2Cd11fZQoaAZHQG7fqSgXdj5oB02LAWgIR0CUpxES/TLGdX2UKGgGR0Bw50IgNgBtaAdNLAFoCEdAlKfcG5c1O3V9lChoBkdAS12U6gdwN2gHS9loCEdAlKg+i8FpwnV9lChoBkdAcqL+n62v0WgHTSMBaAhHQJSpEYUFjd51fZQoaAZHQG+nZcTrVvxoB01tAWgIR0CUqsQlruYydX2UKGgGR0Bu4ZVS4vvjaAdNOAFoCEdAlKsN43WFvnV9lChoBkdAbUgSfUWl/GgHTTEBaAhHQJSr4P3BYV91fZQoaAZHQHAT8NtqHoJoB00YA2gIR0CUrJBSUC7sdX2UKGgGR0BxzrfFaSs9aAdNIAFoCEdAlK0TQ/oq1HV9lChoBkdAcfwLcsUZemgHTRACaAhHQJSuNwQ176Z1fZQoaAZHQHC87UXpGF1oB03jAWgIR0CUr97voePrdX2UKGgGR0BTYQe3hGYsaAdL0GgIR0CUsMQ8wHqvdX2UKGgGR0BwBE2MsH0LaAdNrAFoCEdAlLH+KKpDNXV9lChoBkdAbIUGRmseXGgHTWoBaAhHQJSyg9mpVCJ1fZQoaAZHQHJk1SbYsd1oB00+AWgIR0CUsuAckt2+dX2UKGgGR0Byof655JK8aAdNeQFoCEdAlLMePq9oOHV9lChoBkdAct71/lQuVWgHS+9oCEdAlLPTfBN21XV9lChoBkdAcwjOjqOcUmgHTUEBaAhHQJS0J2C/XXl1fZQoaAZHQEsoT6i0v5BoB0vXaAhHQJS05I8QqZt1fZQoaAZHQHFLlJ+UhV5oB016AWgIR0CUtP7E5yU+dX2UKGgGR0Bvhi5PM0P6aAdNZgJoCEdAlLYl/6O5rnV9lChoBkdAQZo9C/oJRmgHS+RoCEdAlLZe9WZJCnV9lChoBkdAckXCT2WY4WgHTUgBaAhHQJS3eUt7KJV1fZQoaAZHQHDWu2/i5utoB01uAWgIR0CUt7FspG4JdX2UKGgGR0BLj9qtYB/7aAdLxWgIR0CUuUFSKm8/dX2UKGgGR0Bxg0UbkwN9aAdNDwFoCEdAlLn64QSSNnV9lChoBkdAcXEbG3nZCmgHTQIBaAhHQJS6k2OyVwB1fZQoaAZHQETnxx1gYxdoB0vnaAhHQJS8Khf0Eox1fZQoaAZHQHFtTABT4tZoB01iAWgIR0CUvHnTy8SPdX2UKGgGR0BEbMPrfLs9aAdLxWgIR0CUvcWhysCDdX2UKGgGR0BQ7iNS619faAdL0mgIR0CUvhP3SKFadX2UKGgGR0BxSyi5/b0waAdNPQFoCEdAlL/bjT8YRHV9lChoBkdAcqX9ovi97GgHTYcBaAhHQJTByQSzw+d1fZQoaAZHQHEkuXJHRTloB01KAWgIR0CUwjuKoAGTdX2UKGgGR0BLjcAR02cbaAdLtWgIR0CUwr2b5M11dX2UKGgGR0ByP9Pbfxc3aAdNIAFoCEdAlMQQIt16mnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}