File size: 2,577 Bytes
d44684e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: google/pegasus-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_recommendation_sports_equipment_english
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_recommendation_sports_equipment_english

This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9511
- Rouge1: 29.2063
- Rouge2: 9.5238
- Rougel: 28.8889
- Rougelsum: 29.3651
- Gen Len: 3.4762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 0.96  | 12   | 5.1428          | 25.7937 | 4.7619  | 26.1905 | 26.1905   | 3.3810  |
| No log        | 2.0   | 25   | 4.5991          | 28.4127 | 4.7619  | 28.4127 | 28.4127   | 4.2857  |
| No log        | 2.96  | 37   | 4.3659          | 30.0000 | 4.7619  | 30.0    | 30.2381   | 3.9048  |
| No log        | 4.0   | 50   | 4.2992          | 23.2540 | 4.7619  | 23.1746 | 23.3333   | 3.9524  |
| No log        | 4.96  | 62   | 4.1730          | 23.2540 | 4.7619  | 23.1746 | 23.3333   | 3.5714  |
| No log        | 6.0   | 75   | 4.0884          | 29.2063 | 14.2857 | 29.2063 | 29.2063   | 3.4762  |
| No log        | 6.96  | 87   | 4.0252          | 25.0    | 4.7619  | 24.9206 | 25.2381   | 3.4762  |
| No log        | 8.0   | 100  | 4.0019          | 31.5873 | 14.2857 | 31.1905 | 31.4286   | 3.5714  |
| No log        | 8.96  | 112  | 3.9648          | 24.2857 | 4.7619  | 24.2857 | 24.7619   | 3.4762  |
| No log        | 9.6   | 120  | 3.9511          | 29.2063 | 9.5238  | 28.8889 | 29.3651   | 3.4762  |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2