--- base_model: google/pegasus-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: bart_recommendation_sports_equipment_english results: [] --- # bart_recommendation_sports_equipment_english This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9511 - Rouge1: 29.2063 - Rouge2: 9.5238 - Rougel: 28.8889 - Rougelsum: 29.3651 - Gen Len: 3.4762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 0.96 | 12 | 5.1428 | 25.7937 | 4.7619 | 26.1905 | 26.1905 | 3.3810 | | No log | 2.0 | 25 | 4.5991 | 28.4127 | 4.7619 | 28.4127 | 28.4127 | 4.2857 | | No log | 2.96 | 37 | 4.3659 | 30.0000 | 4.7619 | 30.0 | 30.2381 | 3.9048 | | No log | 4.0 | 50 | 4.2992 | 23.2540 | 4.7619 | 23.1746 | 23.3333 | 3.9524 | | No log | 4.96 | 62 | 4.1730 | 23.2540 | 4.7619 | 23.1746 | 23.3333 | 3.5714 | | No log | 6.0 | 75 | 4.0884 | 29.2063 | 14.2857 | 29.2063 | 29.2063 | 3.4762 | | No log | 6.96 | 87 | 4.0252 | 25.0 | 4.7619 | 24.9206 | 25.2381 | 3.4762 | | No log | 8.0 | 100 | 4.0019 | 31.5873 | 14.2857 | 31.1905 | 31.4286 | 3.5714 | | No log | 8.96 | 112 | 3.9648 | 24.2857 | 4.7619 | 24.2857 | 24.7619 | 3.4762 | | No log | 9.6 | 120 | 3.9511 | 29.2063 | 9.5238 | 28.8889 | 29.3651 | 3.4762 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2