sujr commited on
Commit
44dda9b
·
verified ·
1 Parent(s): 59ec66f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "transformer.h.25.mlp.c_proj",
24
+ "transformer.visual.transformer.resblocks.25.attn.out_proj",
25
+ "transformer.h.12.mlp.w1",
26
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc",
27
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc",
28
+ "transformer.h.27.attn.c_proj",
29
+ "transformer.h.4.attn.c_attn",
30
+ "transformer.h.21.attn.c_proj",
31
+ "transformer.visual.transformer.resblocks.8.attn.out_proj",
32
+ "transformer.visual.transformer.resblocks.27.attn.out_proj",
33
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj",
34
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc",
35
+ "transformer.h.3.mlp.w1",
36
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj",
37
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj",
38
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc",
39
+ "transformer.h.20.mlp.c_proj",
40
+ "transformer.visual.transformer.resblocks.18.attn.in_proj",
41
+ "transformer.visual.transformer.resblocks.10.attn.in_proj",
42
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj",
43
+ "transformer.visual.transformer.resblocks.32.attn.in_proj",
44
+ "transformer.h.4.attn.c_proj",
45
+ "transformer.visual.transformer.resblocks.19.attn.in_proj",
46
+ "transformer.h.5.attn.c_attn",
47
+ "transformer.visual.transformer.resblocks.14.attn.in_proj",
48
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc",
49
+ "transformer.h.9.mlp.w2",
50
+ "transformer.h.7.attn.c_attn",
51
+ "transformer.visual.transformer.resblocks.34.attn.in_proj",
52
+ "transformer.h.22.mlp.c_proj",
53
+ "transformer.visual.conv1",
54
+ "transformer.visual.transformer.resblocks.30.attn.out_proj",
55
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc",
56
+ "transformer.h.31.mlp.w2",
57
+ "transformer.h.28.mlp.w1",
58
+ "transformer.h.12.mlp.w2",
59
+ "transformer.h.8.attn.c_attn",
60
+ "transformer.h.6.mlp.w2",
61
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc",
62
+ "transformer.h.14.mlp.c_proj",
63
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj",
64
+ "transformer.h.24.attn.c_attn",
65
+ "transformer.h.15.mlp.c_proj",
66
+ "transformer.h.19.attn.c_proj",
67
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj",
68
+ "transformer.visual.transformer.resblocks.35.attn.out_proj",
69
+ "transformer.h.6.attn.c_proj",
70
+ "transformer.h.31.mlp.w1",
71
+ "transformer.visual.transformer.resblocks.7.attn.out_proj",
72
+ "transformer.h.16.attn.c_attn",
73
+ "transformer.h.25.mlp.w2",
74
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj",
75
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj",
76
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj",
77
+ "transformer.h.16.mlp.w2",
78
+ "transformer.visual.transformer.resblocks.19.attn.out_proj",
79
+ "transformer.visual.transformer.resblocks.32.attn.out_proj",
80
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc",
81
+ "transformer.h.15.attn.c_proj",
82
+ "transformer.h.30.attn.c_attn",
83
+ "transformer.h.22.mlp.w2",
84
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc",
85
+ "transformer.h.2.mlp.c_proj",
86
+ "transformer.h.13.mlp.w1",
87
+ "transformer.h.5.attn.c_proj",
88
+ "transformer.visual.transformer.resblocks.40.attn.out_proj",
89
+ "transformer.visual.transformer.resblocks.17.attn.out_proj",
90
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj",
91
+ "transformer.h.4.mlp.c_proj",
92
+ "transformer.visual.transformer.resblocks.9.attn.in_proj",
93
+ "transformer.visual.transformer.resblocks.1.attn.in_proj",
94
+ "transformer.h.17.mlp.c_proj",
95
+ "transformer.visual.transformer.resblocks.33.attn.in_proj",
96
+ "transformer.visual.transformer.resblocks.10.attn.out_proj",
97
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj",
98
+ "transformer.visual.transformer.resblocks.47.attn.in_proj",
99
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc",
100
+ "transformer.h.19.mlp.w2",
101
+ "transformer.visual.transformer.resblocks.38.attn.in_proj",
102
+ "transformer.visual.transformer.resblocks.25.attn.in_proj",
103
+ "transformer.visual.transformer.resblocks.20.attn.in_proj",
104
+ "transformer.visual.transformer.resblocks.39.attn.in_proj",
105
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc",
106
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc",
107
+ "transformer.h.27.attn.c_attn",
108
+ "transformer.visual.transformer.resblocks.34.attn.out_proj",
109
+ "transformer.visual.transformer.resblocks.2.attn.out_proj",
110
+ "transformer.h.16.mlp.c_proj",
111
+ "transformer.h.30.mlp.w1",
112
+ "transformer.visual.transformer.resblocks.0.attn.out_proj",
113
+ "transformer.visual.transformer.resblocks.22.attn.in_proj",
114
+ "transformer.h.23.mlp.c_proj",
115
+ "transformer.visual.transformer.resblocks.2.attn.in_proj",
116
+ "transformer.h.4.mlp.w2",
117
+ "transformer.h.7.attn.c_proj",
118
+ "transformer.h.6.attn.c_attn",
119
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj",
120
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj",
121
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc",
122
+ "transformer.h.28.mlp.w2",
123
+ "transformer.h.1.mlp.c_proj",
124
+ "transformer.h.16.mlp.w1",
125
+ "transformer.h.0.attn.c_attn",
126
+ "transformer.h.4.mlp.w1",
127
+ "transformer.h.11.mlp.c_proj",
128
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj",
129
+ "transformer.h.15.mlp.w1",
130
+ "transformer.h.28.attn.c_proj",
131
+ "transformer.visual.transformer.resblocks.43.attn.in_proj",
132
+ "transformer.h.18.mlp.c_proj",
133
+ "transformer.h.17.attn.c_proj",
134
+ "transformer.h.8.attn.c_proj",
135
+ "transformer.h.31.mlp.c_proj",
136
+ "transformer.h.9.mlp.w1",
137
+ "transformer.visual.transformer.resblocks.28.attn.out_proj",
138
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc",
139
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj",
140
+ "transformer.h.7.mlp.w2",
141
+ "transformer.visual.transformer.resblocks.29.attn.out_proj",
142
+ "transformer.h.23.mlp.w2",
143
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc",
144
+ "transformer.h.11.attn.c_attn",
145
+ "transformer.h.30.mlp.w2",
146
+ "transformer.visual.transformer.resblocks.29.attn.in_proj",
147
+ "transformer.visual.transformer.resblocks.15.attn.in_proj",
148
+ "transformer.h.26.attn.c_attn",
149
+ "transformer.h.12.mlp.c_proj",
150
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc",
151
+ "transformer.h.5.mlp.w2",
152
+ "transformer.visual.transformer.resblocks.12.attn.in_proj",
153
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj",
154
+ "transformer.visual.transformer.resblocks.22.attn.out_proj",
155
+ "transformer.h.17.mlp.w1",
156
+ "transformer.visual.transformer.resblocks.45.attn.out_proj",
157
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc",
158
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj",
159
+ "transformer.h.2.attn.c_attn",
160
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc",
161
+ "transformer.h.22.mlp.w1",
162
+ "transformer.h.10.mlp.w2",
163
+ "transformer.visual.transformer.resblocks.23.attn.in_proj",
164
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj",
165
+ "transformer.h.30.attn.c_proj",
166
+ "transformer.h.24.mlp.c_proj",
167
+ "transformer.h.10.attn.c_attn",
168
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj",
169
+ "transformer.visual.transformer.resblocks.5.attn.out_proj",
170
+ "transformer.h.12.attn.c_attn",
171
+ "transformer.visual.transformer.resblocks.42.attn.out_proj",
172
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc",
173
+ "transformer.visual.transformer.resblocks.26.attn.out_proj",
174
+ "transformer.h.17.attn.c_attn",
175
+ "transformer.visual.transformer.resblocks.5.attn.in_proj",
176
+ "transformer.visual.transformer.resblocks.37.attn.out_proj",
177
+ "transformer.visual.transformer.resblocks.47.attn.out_proj",
178
+ "transformer.h.21.mlp.c_proj",
179
+ "transformer.visual.transformer.resblocks.41.attn.out_proj",
180
+ "transformer.h.9.attn.c_attn",
181
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc",
182
+ "transformer.visual.transformer.resblocks.13.attn.in_proj",
183
+ "transformer.h.18.attn.c_proj",
184
+ "transformer.h.18.mlp.w2",
185
+ "transformer.h.20.mlp.w1",
186
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc",
187
+ "transformer.visual.transformer.resblocks.38.attn.out_proj",
188
+ "transformer.visual.transformer.resblocks.13.attn.out_proj",
189
+ "transformer.h.8.mlp.c_proj",
190
+ "transformer.h.29.mlp.w2",
191
+ "transformer.h.25.attn.c_proj",
192
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj",
193
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj",
194
+ "transformer.h.21.mlp.w1",
195
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc",
196
+ "transformer.visual.transformer.resblocks.46.attn.in_proj",
197
+ "transformer.visual.transformer.resblocks.31.attn.out_proj",
198
+ "transformer.h.6.mlp.w1",
199
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj",
200
+ "transformer.h.11.attn.c_proj",
201
+ "transformer.h.1.attn.c_proj",
202
+ "transformer.h.24.attn.c_proj",
203
+ "transformer.h.15.attn.c_attn",
204
+ "transformer.h.5.mlp.w1",
205
+ "transformer.h.27.mlp.c_proj",
206
+ "transformer.visual.transformer.resblocks.4.attn.out_proj",
207
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc",
208
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj",
209
+ "transformer.visual.transformer.resblocks.15.attn.out_proj",
210
+ "transformer.visual.transformer.resblocks.21.attn.in_proj",
211
+ "transformer.h.27.mlp.w2",
212
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc",
213
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj",
214
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj",
215
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj",
216
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc",
217
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc",
218
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj",
219
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc",
220
+ "transformer.h.14.attn.c_proj",
221
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc",
222
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj",
223
+ "transformer.visual.transformer.resblocks.40.attn.in_proj",
224
+ "transformer.visual.transformer.resblocks.6.attn.out_proj",
225
+ "transformer.h.20.attn.c_proj",
226
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc",
227
+ "transformer.h.29.mlp.w1",
228
+ "transformer.h.0.mlp.w1",
229
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc",
230
+ "transformer.visual.transformer.resblocks.16.attn.in_proj",
231
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj",
232
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj",
233
+ "transformer.h.2.attn.c_proj",
234
+ "transformer.visual.transformer.resblocks.44.attn.out_proj",
235
+ "transformer.h.1.mlp.w1",
236
+ "transformer.visual.transformer.resblocks.11.attn.in_proj",
237
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj",
238
+ "transformer.h.13.attn.c_proj",
239
+ "transformer.h.19.mlp.w1",
240
+ "transformer.h.3.attn.c_proj",
241
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc",
242
+ "transformer.h.3.mlp.w2",
243
+ "transformer.visual.transformer.resblocks.36.attn.in_proj",
244
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc",
245
+ "transformer.h.14.attn.c_attn",
246
+ "transformer.visual.transformer.resblocks.35.attn.in_proj",
247
+ "transformer.h.13.attn.c_attn",
248
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj",
249
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc",
250
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc",
251
+ "transformer.h.7.mlp.w1",
252
+ "transformer.h.8.mlp.w2",
253
+ "transformer.h.26.mlp.w2",
254
+ "transformer.h.0.attn.c_proj",
255
+ "transformer.visual.transformer.resblocks.6.attn.in_proj",
256
+ "transformer.h.20.mlp.w2",
257
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc",
258
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj",
259
+ "transformer.h.0.mlp.w2",
260
+ "transformer.h.22.attn.c_attn",
261
+ "transformer.h.23.mlp.w1",
262
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc",
263
+ "transformer.h.0.mlp.c_proj",
264
+ "transformer.h.29.mlp.c_proj",
265
+ "transformer.visual.transformer.resblocks.12.attn.out_proj",
266
+ "transformer.visual.transformer.resblocks.24.attn.in_proj",
267
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc",
268
+ "transformer.visual.transformer.resblocks.45.attn.in_proj",
269
+ "transformer.h.15.mlp.w2",
270
+ "transformer.visual.transformer.resblocks.27.attn.in_proj",
271
+ "transformer.visual.transformer.resblocks.17.attn.in_proj",
272
+ "transformer.h.18.attn.c_attn",
273
+ "transformer.h.11.mlp.w1",
274
+ "transformer.visual.transformer.resblocks.1.attn.out_proj",
275
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj",
276
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj",
277
+ "transformer.visual.transformer.resblocks.24.attn.out_proj",
278
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj",
279
+ "transformer.h.17.mlp.w2",
280
+ "transformer.h.22.attn.c_proj",
281
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj",
282
+ "transformer.h.31.attn.c_attn",
283
+ "transformer.h.24.mlp.w2",
284
+ "transformer.h.2.mlp.w1",
285
+ "transformer.h.12.attn.c_proj",
286
+ "transformer.visual.transformer.resblocks.26.attn.in_proj",
287
+ "transformer.visual.transformer.resblocks.9.attn.out_proj",
288
+ "transformer.h.21.attn.c_attn",
289
+ "transformer.h.29.attn.c_attn",
290
+ "transformer.h.3.attn.c_attn",
291
+ "transformer.h.30.mlp.c_proj",
292
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj",
293
+ "transformer.h.24.mlp.w1",
294
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj",
295
+ "transformer.visual.transformer.resblocks.41.attn.in_proj",
296
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc",
297
+ "transformer.h.6.mlp.c_proj",
298
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj",
299
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj",
300
+ "transformer.h.28.attn.c_attn",
301
+ "transformer.h.13.mlp.c_proj",
302
+ "transformer.h.7.mlp.c_proj",
303
+ "transformer.h.14.mlp.w2",
304
+ "transformer.visual.transformer.resblocks.7.attn.in_proj",
305
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj",
306
+ "transformer.h.9.attn.c_proj",
307
+ "transformer.visual.transformer.resblocks.44.attn.in_proj",
308
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc",
309
+ "transformer.visual.transformer.resblocks.0.attn.in_proj",
310
+ "transformer.h.21.mlp.w2",
311
+ "transformer.h.8.mlp.w1",
312
+ "transformer.h.10.attn.c_proj",
313
+ "transformer.h.25.attn.c_attn",
314
+ "transformer.h.1.mlp.w2",
315
+ "transformer.visual.transformer.resblocks.46.attn.out_proj",
316
+ "transformer.visual.transformer.resblocks.18.attn.out_proj",
317
+ "transformer.visual.transformer.resblocks.28.attn.in_proj",
318
+ "transformer.h.31.attn.c_proj",
319
+ "transformer.h.26.attn.c_proj",
320
+ "transformer.visual.transformer.resblocks.16.attn.out_proj",
321
+ "transformer.visual.transformer.resblocks.3.attn.out_proj",
322
+ "transformer.h.16.attn.c_proj",
323
+ "transformer.visual.transformer.resblocks.42.attn.in_proj",
324
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj",
325
+ "transformer.visual.transformer.resblocks.43.attn.out_proj",
326
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc",
327
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj",
328
+ "transformer.h.11.mlp.w2",
329
+ "transformer.h.10.mlp.w1",
330
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc",
331
+ "transformer.h.2.mlp.w2",
332
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj",
333
+ "transformer.h.10.mlp.c_proj",
334
+ "transformer.h.14.mlp.w1",
335
+ "transformer.visual.transformer.resblocks.14.attn.out_proj",
336
+ "transformer.visual.transformer.resblocks.4.attn.in_proj",
337
+ "transformer.visual.transformer.resblocks.23.attn.out_proj",
338
+ "transformer.visual.transformer.resblocks.11.attn.out_proj",
339
+ "transformer.h.3.mlp.c_proj",
340
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj",
341
+ "transformer.h.25.mlp.w1",
342
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc",
343
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc",
344
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj",
345
+ "transformer.visual.transformer.resblocks.20.attn.out_proj",
346
+ "transformer.visual.transformer.resblocks.21.attn.out_proj",
347
+ "transformer.visual.transformer.resblocks.8.attn.in_proj",
348
+ "transformer.h.5.mlp.c_proj",
349
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc",
350
+ "transformer.h.19.attn.c_attn",
351
+ "transformer.visual.transformer.resblocks.39.attn.out_proj",
352
+ "transformer.visual.transformer.resblocks.36.attn.out_proj",
353
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc",
354
+ "transformer.h.13.mlp.w2",
355
+ "transformer.h.28.mlp.c_proj",
356
+ "transformer.h.29.attn.c_proj",
357
+ "transformer.h.18.mlp.w1",
358
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc",
359
+ "transformer.h.20.attn.c_attn",
360
+ "transformer.visual.transformer.resblocks.31.attn.in_proj",
361
+ "transformer.visual.transformer.resblocks.30.attn.in_proj",
362
+ "transformer.h.27.mlp.w1",
363
+ "transformer.visual.transformer.resblocks.37.attn.in_proj",
364
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc",
365
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc",
366
+ "transformer.h.23.attn.c_proj",
367
+ "transformer.h.19.mlp.c_proj",
368
+ "transformer.h.23.attn.c_attn",
369
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj",
370
+ "transformer.h.1.attn.c_attn",
371
+ "transformer.visual.transformer.resblocks.3.attn.in_proj",
372
+ "transformer.h.9.mlp.c_proj",
373
+ "transformer.h.26.mlp.c_proj",
374
+ "transformer.visual.transformer.resblocks.33.attn.out_proj",
375
+ "transformer.h.26.mlp.w1"
376
+ ],
377
+ "task_type": "CAUSAL_LM",
378
+ "use_dora": false,
379
+ "use_rslora": false
380
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a4d62d92c4b35ef29608ae3d385e2dbbd3bd2e44e1e9c274952fed6b383e48e
3
+ size 469105640
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step800
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a343dd93cd21bdc90d289f3ca48ab49de24b9f748799acb23184c62f5d2b505a
3
+ size 15920
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e78f906506770f43e59c54fef023c80264ba4db0c95909db5aa497d4875f1e32
3
+ size 15920
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1801fc92aac20f4b2cd6c241493cc948c1ce8800b14797fdefee2b1f494d7b9f
3
+ size 15920
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb7617cd6b75e491a348879fed069c07f2a2f52647a39a51812a3039227e011e
3
+ size 15920
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2aa9e524787be3fd2130cbb1a33ce0d917090fdf18cf026905505c6c1f67c64
3
+ size 15920
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:048ab222ccc631300416028b25a3132d82f849b7a32356b338d26e9eef8ae3fb
3
+ size 15920
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9670c00e2e4b001bb5f458d57d181a0ae7bf4587cc05947eef4b84e438e4178
3
+ size 15920
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da5ed04d69158bc88c3dc621620dae175703ddfab9924471e44fc939b4c4386c
3
+ size 15920
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901dc2645bb26444439097220bce3343e3d0a315e276f271fbd122fb8170ad53
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 1280,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.12325706802249442,
5
+ "eval_steps": 500,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0015407133502811801,
13
+ "grad_norm": 48.20575104273089,
14
+ "learning_rate": 4.615384615384616e-06,
15
+ "loss": 1.3971,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.0030814267005623602,
20
+ "grad_norm": 33.11975747134839,
21
+ "learning_rate": 9.230769230769232e-06,
22
+ "loss": 1.4053,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.004622140050843541,
27
+ "grad_norm": 39.826606299507084,
28
+ "learning_rate": 1.3846153846153847e-05,
29
+ "loss": 1.3472,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.0061628534011247205,
34
+ "grad_norm": 6.773742739301677,
35
+ "learning_rate": 1.8461538461538465e-05,
36
+ "loss": 1.1311,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.007703566751405901,
41
+ "grad_norm": 12.278712041952108,
42
+ "learning_rate": 2.307692307692308e-05,
43
+ "loss": 0.9715,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.009244280101687081,
48
+ "grad_norm": 3.776870082439811,
49
+ "learning_rate": 2.7692307692307694e-05,
50
+ "loss": 0.8937,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.010784993451968261,
55
+ "grad_norm": 6.812660145408396,
56
+ "learning_rate": 2.9999955171465948e-05,
57
+ "loss": 0.8472,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.012325706802249441,
62
+ "grad_norm": 14.1920325479403,
63
+ "learning_rate": 2.9999596544801216e-05,
64
+ "loss": 0.8418,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.013866420152530621,
69
+ "grad_norm": 4.760185564415112,
70
+ "learning_rate": 2.999887930004599e-05,
71
+ "loss": 0.8275,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.015407133502811803,
76
+ "grad_norm": 5.64069685533569,
77
+ "learning_rate": 2.9997803454348518e-05,
78
+ "loss": 0.8085,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.01694784685309298,
83
+ "grad_norm": 8.910755610595423,
84
+ "learning_rate": 2.9996369033430674e-05,
85
+ "loss": 0.8105,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.018488560203374162,
90
+ "grad_norm": 7.128375140746789,
91
+ "learning_rate": 2.9994576071587345e-05,
92
+ "loss": 0.7647,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.020029273553655344,
97
+ "grad_norm": 4.883749519467239,
98
+ "learning_rate": 2.9992424611685575e-05,
99
+ "loss": 0.7472,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.021569986903936522,
104
+ "grad_norm": 6.669698248447361,
105
+ "learning_rate": 2.9989914705163582e-05,
106
+ "loss": 0.7644,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.023110700254217704,
111
+ "grad_norm": 8.814324372744018,
112
+ "learning_rate": 2.9987046412029506e-05,
113
+ "loss": 0.7642,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.024651413604498882,
118
+ "grad_norm": 5.408352128962619,
119
+ "learning_rate": 2.9983819800859976e-05,
120
+ "loss": 0.7506,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.026192126954780064,
125
+ "grad_norm": 4.916006313310609,
126
+ "learning_rate": 2.998023494879848e-05,
127
+ "loss": 0.7086,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.027732840305061242,
132
+ "grad_norm": 6.4968532868316515,
133
+ "learning_rate": 2.9976291941553508e-05,
134
+ "loss": 0.7302,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.029273553655342423,
139
+ "grad_norm": 5.414282856209666,
140
+ "learning_rate": 2.9971990873396512e-05,
141
+ "loss": 0.7389,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.030814267005623605,
146
+ "grad_norm": 35.78019922037886,
147
+ "learning_rate": 2.996733184715964e-05,
148
+ "loss": 0.7247,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.03235498035590478,
153
+ "grad_norm": 4.344484335761467,
154
+ "learning_rate": 2.9962314974233306e-05,
155
+ "loss": 0.7239,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.03389569370618596,
160
+ "grad_norm": 4.761393885682967,
161
+ "learning_rate": 2.995694037456349e-05,
162
+ "loss": 0.7219,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.03543640705646715,
167
+ "grad_norm": 6.082748106236669,
168
+ "learning_rate": 2.995120817664889e-05,
169
+ "loss": 0.7036,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.036977120406748325,
174
+ "grad_norm": 7.925002223835823,
175
+ "learning_rate": 2.9945118517537857e-05,
176
+ "loss": 0.6795,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.0385178337570295,
181
+ "grad_norm": 4.33748938479485,
182
+ "learning_rate": 2.9938671542825102e-05,
183
+ "loss": 0.6894,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.04005854710731069,
188
+ "grad_norm": 3.419861222736367,
189
+ "learning_rate": 2.993186740664821e-05,
190
+ "loss": 0.674,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.041599260457591866,
195
+ "grad_norm": 4.418012569894865,
196
+ "learning_rate": 2.9924706271683993e-05,
197
+ "loss": 0.7091,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.043139973807873044,
202
+ "grad_norm": 5.5535932232942065,
203
+ "learning_rate": 2.9917188309144548e-05,
204
+ "loss": 0.7114,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.04468068715815422,
209
+ "grad_norm": 5.346051172390458,
210
+ "learning_rate": 2.990931369877321e-05,
211
+ "loss": 0.7092,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.04622140050843541,
216
+ "grad_norm": 5.04585392782648,
217
+ "learning_rate": 2.9901082628840216e-05,
218
+ "loss": 0.7079,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.047762113858716586,
223
+ "grad_norm": 5.3108067226217095,
224
+ "learning_rate": 2.989249529613823e-05,
225
+ "loss": 0.7044,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.049302827208997764,
230
+ "grad_norm": 12.936374781230974,
231
+ "learning_rate": 2.9883551905977647e-05,
232
+ "loss": 0.6795,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.05084354055927895,
237
+ "grad_norm": 4.969368758151501,
238
+ "learning_rate": 2.987425267218164e-05,
239
+ "loss": 0.7365,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.05238425390956013,
244
+ "grad_norm": 17.59963354249395,
245
+ "learning_rate": 2.9864597817081083e-05,
246
+ "loss": 0.6459,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.053924967259841305,
251
+ "grad_norm": 4.287709062556245,
252
+ "learning_rate": 2.985458757150924e-05,
253
+ "loss": 0.7151,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.055465680610122484,
258
+ "grad_norm": 2.353889201419343,
259
+ "learning_rate": 2.9844222174796224e-05,
260
+ "loss": 0.6982,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.05700639396040367,
265
+ "grad_norm": 6.487203178892158,
266
+ "learning_rate": 2.983350187476328e-05,
267
+ "loss": 0.6946,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.05854710731068485,
272
+ "grad_norm": 8.604226568596971,
273
+ "learning_rate": 2.982242692771688e-05,
274
+ "loss": 0.7024,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.060087820660966025,
279
+ "grad_norm": 3.7381224404208107,
280
+ "learning_rate": 2.9810997598442558e-05,
281
+ "loss": 0.6813,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.06162853401124721,
286
+ "grad_norm": 7.21302363512955,
287
+ "learning_rate": 2.9799214160198622e-05,
288
+ "loss": 0.6572,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.06316924736152839,
293
+ "grad_norm": 7.446657585655329,
294
+ "learning_rate": 2.9787076894709592e-05,
295
+ "loss": 0.6612,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.06470996071180957,
300
+ "grad_norm": 16.149479699980372,
301
+ "learning_rate": 2.977458609215946e-05,
302
+ "loss": 0.6823,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.06625067406209074,
307
+ "grad_norm": 3.654646693112352,
308
+ "learning_rate": 2.9761742051184786e-05,
309
+ "loss": 0.6941,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.06779138741237192,
314
+ "grad_norm": 7.468345726914931,
315
+ "learning_rate": 2.9748545078867524e-05,
316
+ "loss": 0.6254,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.06933210076265311,
321
+ "grad_norm": 6.559292545318311,
322
+ "learning_rate": 2.9734995490727696e-05,
323
+ "loss": 0.6977,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.0708728141129343,
328
+ "grad_norm": 8.749994768413615,
329
+ "learning_rate": 2.9721093610715844e-05,
330
+ "loss": 0.6742,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.07241352746321547,
335
+ "grad_norm": 14.746822726186753,
336
+ "learning_rate": 2.9706839771205282e-05,
337
+ "loss": 0.6986,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.07395424081349665,
342
+ "grad_norm": 2.1125271451210494,
343
+ "learning_rate": 2.9692234312984156e-05,
344
+ "loss": 0.6708,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.07549495416377783,
349
+ "grad_norm": 4.191787346884265,
350
+ "learning_rate": 2.9677277585247296e-05,
351
+ "loss": 0.6839,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.077035667514059,
356
+ "grad_norm": 6.099946769106883,
357
+ "learning_rate": 2.9661969945587867e-05,
358
+ "loss": 0.7253,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.07857638086434018,
363
+ "grad_norm": 8.272898482647978,
364
+ "learning_rate": 2.9646311759988804e-05,
365
+ "loss": 0.6972,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.08011709421462138,
370
+ "grad_norm": 12.38761120543235,
371
+ "learning_rate": 2.9630303402814095e-05,
372
+ "loss": 0.7174,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.08165780756490255,
377
+ "grad_norm": 7.826170900143438,
378
+ "learning_rate": 2.961394525679979e-05,
379
+ "loss": 0.7227,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.08319852091518373,
384
+ "grad_norm": 3.926770198625081,
385
+ "learning_rate": 2.9597237713044888e-05,
386
+ "loss": 0.6682,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.08473923426546491,
391
+ "grad_norm": 3.3408474311965692,
392
+ "learning_rate": 2.9580181171001962e-05,
393
+ "loss": 0.6634,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.08627994761574609,
398
+ "grad_norm": 15.954087186336258,
399
+ "learning_rate": 2.956277603846761e-05,
400
+ "loss": 0.7005,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.08782066096602727,
405
+ "grad_norm": 3.3366594091813475,
406
+ "learning_rate": 2.9545022731572723e-05,
407
+ "loss": 0.6752,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.08936137431630845,
412
+ "grad_norm": 4.359220549879328,
413
+ "learning_rate": 2.9526921674772522e-05,
414
+ "loss": 0.6985,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.09090208766658964,
419
+ "grad_norm": 5.585924353950877,
420
+ "learning_rate": 2.95084733008364e-05,
421
+ "loss": 0.6729,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.09244280101687082,
426
+ "grad_norm": 2.5002732127626075,
427
+ "learning_rate": 2.94896780508376e-05,
428
+ "loss": 0.6881,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.093983514367152,
433
+ "grad_norm": 8.22666868773466,
434
+ "learning_rate": 2.9470536374142656e-05,
435
+ "loss": 0.6918,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.09552422771743317,
440
+ "grad_norm": 14.050897991765508,
441
+ "learning_rate": 2.9451048728400644e-05,
442
+ "loss": 0.6584,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.09706494106771435,
447
+ "grad_norm": 3.117445397285045,
448
+ "learning_rate": 2.9431215579532253e-05,
449
+ "loss": 0.6495,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.09860565441799553,
454
+ "grad_norm": 7.000286096448409,
455
+ "learning_rate": 2.9411037401718628e-05,
456
+ "loss": 0.6568,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.1001463677682767,
461
+ "grad_norm": 3.09698455955492,
462
+ "learning_rate": 2.939051467739006e-05,
463
+ "loss": 0.7095,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.1016870811185579,
468
+ "grad_norm": 4.163429426840949,
469
+ "learning_rate": 2.936964789721442e-05,
470
+ "loss": 0.6573,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.10322779446883908,
475
+ "grad_norm": 3.282543980811516,
476
+ "learning_rate": 2.934843756008546e-05,
477
+ "loss": 0.6901,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.10476850781912025,
482
+ "grad_norm": 7.4918954929572115,
483
+ "learning_rate": 2.932688417311085e-05,
484
+ "loss": 0.6826,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.10630922116940143,
489
+ "grad_norm": 49.53066344289919,
490
+ "learning_rate": 2.9304988251600084e-05,
491
+ "loss": 0.6668,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.10784993451968261,
496
+ "grad_norm": 23.218366206451197,
497
+ "learning_rate": 2.9282750319052154e-05,
498
+ "loss": 0.6643,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.10939064786996379,
503
+ "grad_norm": 2.59944116748961,
504
+ "learning_rate": 2.9260170907143012e-05,
505
+ "loss": 0.6709,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.11093136122024497,
510
+ "grad_norm": 4.59006482180365,
511
+ "learning_rate": 2.9237250555712887e-05,
512
+ "loss": 0.6878,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.11247207457052616,
517
+ "grad_norm": 3.1508976338573507,
518
+ "learning_rate": 2.9213989812753366e-05,
519
+ "loss": 0.6512,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.11401278792080734,
524
+ "grad_norm": 4.5342197552006835,
525
+ "learning_rate": 2.9190389234394285e-05,
526
+ "loss": 0.6687,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.11555350127108852,
531
+ "grad_norm": 6.514898099534209,
532
+ "learning_rate": 2.9166449384890446e-05,
533
+ "loss": 0.6868,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.1170942146213697,
538
+ "grad_norm": 5.1251296980659005,
539
+ "learning_rate": 2.9142170836608115e-05,
540
+ "loss": 0.6869,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.11863492797165087,
545
+ "grad_norm": 5.896478552497953,
546
+ "learning_rate": 2.9117554170011352e-05,
547
+ "loss": 0.667,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.12017564132193205,
552
+ "grad_norm": 3.4672489526983483,
553
+ "learning_rate": 2.909259997364811e-05,
554
+ "loss": 0.6674,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.12171635467221323,
559
+ "grad_norm": 5.413662982418376,
560
+ "learning_rate": 2.9067308844136193e-05,
561
+ "loss": 0.6891,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.12325706802249442,
566
+ "grad_norm": 5.807164850831801,
567
+ "learning_rate": 2.9041681386148966e-05,
568
+ "loss": 0.6447,
569
+ "step": 800
570
+ }
571
+ ],
572
+ "logging_steps": 10,
573
+ "max_steps": 6490,
574
+ "num_input_tokens_seen": 0,
575
+ "num_train_epochs": 1,
576
+ "save_steps": 400,
577
+ "stateful_callbacks": {
578
+ "TrainerControl": {
579
+ "args": {
580
+ "should_epoch_stop": false,
581
+ "should_evaluate": false,
582
+ "should_log": false,
583
+ "should_save": true,
584
+ "should_training_stop": false
585
+ },
586
+ "attributes": {}
587
+ }
588
+ },
589
+ "total_flos": 7.289521573986304e+18,
590
+ "train_batch_size": 4,
591
+ "trial_name": null,
592
+ "trial_params": null
593
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca3eb9606621dd3b3f8b506f95a7ce6bf2218992e9565b54ee61e2cecb502260
3
+ size 6392
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)