Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_config.json +380 -0
- adapter_model.safetensors +3 -0
- latest +1 -0
- qwen.tiktoken +0 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +3 -0
- tokenizer_config.json +14 -0
- trainer_state.json +593 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.h.25.mlp.c_proj",
|
24 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
25 |
+
"transformer.h.12.mlp.w1",
|
26 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
27 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
28 |
+
"transformer.h.27.attn.c_proj",
|
29 |
+
"transformer.h.4.attn.c_attn",
|
30 |
+
"transformer.h.21.attn.c_proj",
|
31 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
32 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
33 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
34 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
35 |
+
"transformer.h.3.mlp.w1",
|
36 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
37 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
38 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
39 |
+
"transformer.h.20.mlp.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
42 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
43 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
44 |
+
"transformer.h.4.attn.c_proj",
|
45 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
46 |
+
"transformer.h.5.attn.c_attn",
|
47 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
49 |
+
"transformer.h.9.mlp.w2",
|
50 |
+
"transformer.h.7.attn.c_attn",
|
51 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
52 |
+
"transformer.h.22.mlp.c_proj",
|
53 |
+
"transformer.visual.conv1",
|
54 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
56 |
+
"transformer.h.31.mlp.w2",
|
57 |
+
"transformer.h.28.mlp.w1",
|
58 |
+
"transformer.h.12.mlp.w2",
|
59 |
+
"transformer.h.8.attn.c_attn",
|
60 |
+
"transformer.h.6.mlp.w2",
|
61 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
62 |
+
"transformer.h.14.mlp.c_proj",
|
63 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
64 |
+
"transformer.h.24.attn.c_attn",
|
65 |
+
"transformer.h.15.mlp.c_proj",
|
66 |
+
"transformer.h.19.attn.c_proj",
|
67 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
69 |
+
"transformer.h.6.attn.c_proj",
|
70 |
+
"transformer.h.31.mlp.w1",
|
71 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
72 |
+
"transformer.h.16.attn.c_attn",
|
73 |
+
"transformer.h.25.mlp.w2",
|
74 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
75 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
76 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
77 |
+
"transformer.h.16.mlp.w2",
|
78 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
79 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
81 |
+
"transformer.h.15.attn.c_proj",
|
82 |
+
"transformer.h.30.attn.c_attn",
|
83 |
+
"transformer.h.22.mlp.w2",
|
84 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
85 |
+
"transformer.h.2.mlp.c_proj",
|
86 |
+
"transformer.h.13.mlp.w1",
|
87 |
+
"transformer.h.5.attn.c_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
89 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
90 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
91 |
+
"transformer.h.4.mlp.c_proj",
|
92 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
93 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
94 |
+
"transformer.h.17.mlp.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
96 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
97 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
99 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
100 |
+
"transformer.h.19.mlp.w2",
|
101 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
102 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
103 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
104 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
106 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
107 |
+
"transformer.h.27.attn.c_attn",
|
108 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
110 |
+
"transformer.h.16.mlp.c_proj",
|
111 |
+
"transformer.h.30.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
113 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
114 |
+
"transformer.h.23.mlp.c_proj",
|
115 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
116 |
+
"transformer.h.4.mlp.w2",
|
117 |
+
"transformer.h.7.attn.c_proj",
|
118 |
+
"transformer.h.6.attn.c_attn",
|
119 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
121 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
122 |
+
"transformer.h.28.mlp.w2",
|
123 |
+
"transformer.h.1.mlp.c_proj",
|
124 |
+
"transformer.h.16.mlp.w1",
|
125 |
+
"transformer.h.0.attn.c_attn",
|
126 |
+
"transformer.h.4.mlp.w1",
|
127 |
+
"transformer.h.11.mlp.c_proj",
|
128 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
129 |
+
"transformer.h.15.mlp.w1",
|
130 |
+
"transformer.h.28.attn.c_proj",
|
131 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
132 |
+
"transformer.h.18.mlp.c_proj",
|
133 |
+
"transformer.h.17.attn.c_proj",
|
134 |
+
"transformer.h.8.attn.c_proj",
|
135 |
+
"transformer.h.31.mlp.c_proj",
|
136 |
+
"transformer.h.9.mlp.w1",
|
137 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
139 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
140 |
+
"transformer.h.7.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
142 |
+
"transformer.h.23.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
144 |
+
"transformer.h.11.attn.c_attn",
|
145 |
+
"transformer.h.30.mlp.w2",
|
146 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
148 |
+
"transformer.h.26.attn.c_attn",
|
149 |
+
"transformer.h.12.mlp.c_proj",
|
150 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
151 |
+
"transformer.h.5.mlp.w2",
|
152 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
153 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
155 |
+
"transformer.h.17.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
157 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
158 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
159 |
+
"transformer.h.2.attn.c_attn",
|
160 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
161 |
+
"transformer.h.22.mlp.w1",
|
162 |
+
"transformer.h.10.mlp.w2",
|
163 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
164 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
165 |
+
"transformer.h.30.attn.c_proj",
|
166 |
+
"transformer.h.24.mlp.c_proj",
|
167 |
+
"transformer.h.10.attn.c_attn",
|
168 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
170 |
+
"transformer.h.12.attn.c_attn",
|
171 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
172 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
173 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
174 |
+
"transformer.h.17.attn.c_attn",
|
175 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
177 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
178 |
+
"transformer.h.21.mlp.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
180 |
+
"transformer.h.9.attn.c_attn",
|
181 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
182 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
183 |
+
"transformer.h.18.attn.c_proj",
|
184 |
+
"transformer.h.18.mlp.w2",
|
185 |
+
"transformer.h.20.mlp.w1",
|
186 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
189 |
+
"transformer.h.8.mlp.c_proj",
|
190 |
+
"transformer.h.29.mlp.w2",
|
191 |
+
"transformer.h.25.attn.c_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
193 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
194 |
+
"transformer.h.21.mlp.w1",
|
195 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
196 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
198 |
+
"transformer.h.6.mlp.w1",
|
199 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
200 |
+
"transformer.h.11.attn.c_proj",
|
201 |
+
"transformer.h.1.attn.c_proj",
|
202 |
+
"transformer.h.24.attn.c_proj",
|
203 |
+
"transformer.h.15.attn.c_attn",
|
204 |
+
"transformer.h.5.mlp.w1",
|
205 |
+
"transformer.h.27.mlp.c_proj",
|
206 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
207 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
208 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
209 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
210 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
211 |
+
"transformer.h.27.mlp.w2",
|
212 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
213 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
214 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
215 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
216 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
217 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
218 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
219 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
220 |
+
"transformer.h.14.attn.c_proj",
|
221 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
222 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
223 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
224 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
225 |
+
"transformer.h.20.attn.c_proj",
|
226 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
227 |
+
"transformer.h.29.mlp.w1",
|
228 |
+
"transformer.h.0.mlp.w1",
|
229 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
230 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
231 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
232 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
233 |
+
"transformer.h.2.attn.c_proj",
|
234 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
235 |
+
"transformer.h.1.mlp.w1",
|
236 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
237 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
238 |
+
"transformer.h.13.attn.c_proj",
|
239 |
+
"transformer.h.19.mlp.w1",
|
240 |
+
"transformer.h.3.attn.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
242 |
+
"transformer.h.3.mlp.w2",
|
243 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
244 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
245 |
+
"transformer.h.14.attn.c_attn",
|
246 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
247 |
+
"transformer.h.13.attn.c_attn",
|
248 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
249 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
250 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
251 |
+
"transformer.h.7.mlp.w1",
|
252 |
+
"transformer.h.8.mlp.w2",
|
253 |
+
"transformer.h.26.mlp.w2",
|
254 |
+
"transformer.h.0.attn.c_proj",
|
255 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
256 |
+
"transformer.h.20.mlp.w2",
|
257 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
258 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
259 |
+
"transformer.h.0.mlp.w2",
|
260 |
+
"transformer.h.22.attn.c_attn",
|
261 |
+
"transformer.h.23.mlp.w1",
|
262 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
263 |
+
"transformer.h.0.mlp.c_proj",
|
264 |
+
"transformer.h.29.mlp.c_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
266 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
267 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
268 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
269 |
+
"transformer.h.15.mlp.w2",
|
270 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
271 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
272 |
+
"transformer.h.18.attn.c_attn",
|
273 |
+
"transformer.h.11.mlp.w1",
|
274 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
275 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
276 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
278 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
279 |
+
"transformer.h.17.mlp.w2",
|
280 |
+
"transformer.h.22.attn.c_proj",
|
281 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
282 |
+
"transformer.h.31.attn.c_attn",
|
283 |
+
"transformer.h.24.mlp.w2",
|
284 |
+
"transformer.h.2.mlp.w1",
|
285 |
+
"transformer.h.12.attn.c_proj",
|
286 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
287 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
288 |
+
"transformer.h.21.attn.c_attn",
|
289 |
+
"transformer.h.29.attn.c_attn",
|
290 |
+
"transformer.h.3.attn.c_attn",
|
291 |
+
"transformer.h.30.mlp.c_proj",
|
292 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
293 |
+
"transformer.h.24.mlp.w1",
|
294 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
296 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
297 |
+
"transformer.h.6.mlp.c_proj",
|
298 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
299 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
300 |
+
"transformer.h.28.attn.c_attn",
|
301 |
+
"transformer.h.13.mlp.c_proj",
|
302 |
+
"transformer.h.7.mlp.c_proj",
|
303 |
+
"transformer.h.14.mlp.w2",
|
304 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
306 |
+
"transformer.h.9.attn.c_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
309 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
310 |
+
"transformer.h.21.mlp.w2",
|
311 |
+
"transformer.h.8.mlp.w1",
|
312 |
+
"transformer.h.10.attn.c_proj",
|
313 |
+
"transformer.h.25.attn.c_attn",
|
314 |
+
"transformer.h.1.mlp.w2",
|
315 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
316 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
317 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
318 |
+
"transformer.h.31.attn.c_proj",
|
319 |
+
"transformer.h.26.attn.c_proj",
|
320 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
322 |
+
"transformer.h.16.attn.c_proj",
|
323 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
326 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
327 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
328 |
+
"transformer.h.11.mlp.w2",
|
329 |
+
"transformer.h.10.mlp.w1",
|
330 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
331 |
+
"transformer.h.2.mlp.w2",
|
332 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
333 |
+
"transformer.h.10.mlp.c_proj",
|
334 |
+
"transformer.h.14.mlp.w1",
|
335 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
336 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
337 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
339 |
+
"transformer.h.3.mlp.c_proj",
|
340 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
341 |
+
"transformer.h.25.mlp.w1",
|
342 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
343 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
344 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
345 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
346 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
347 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
348 |
+
"transformer.h.5.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
350 |
+
"transformer.h.19.attn.c_attn",
|
351 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
353 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
354 |
+
"transformer.h.13.mlp.w2",
|
355 |
+
"transformer.h.28.mlp.c_proj",
|
356 |
+
"transformer.h.29.attn.c_proj",
|
357 |
+
"transformer.h.18.mlp.w1",
|
358 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
359 |
+
"transformer.h.20.attn.c_attn",
|
360 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
361 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
362 |
+
"transformer.h.27.mlp.w1",
|
363 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
364 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
365 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
366 |
+
"transformer.h.23.attn.c_proj",
|
367 |
+
"transformer.h.19.mlp.c_proj",
|
368 |
+
"transformer.h.23.attn.c_attn",
|
369 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
370 |
+
"transformer.h.1.attn.c_attn",
|
371 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
372 |
+
"transformer.h.9.mlp.c_proj",
|
373 |
+
"transformer.h.26.mlp.c_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
375 |
+
"transformer.h.26.mlp.w1"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a4d62d92c4b35ef29608ae3d385e2dbbd3bd2e44e1e9c274952fed6b383e48e
|
3 |
+
size 469105640
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step800
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a343dd93cd21bdc90d289f3ca48ab49de24b9f748799acb23184c62f5d2b505a
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e78f906506770f43e59c54fef023c80264ba4db0c95909db5aa497d4875f1e32
|
3 |
+
size 15920
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1801fc92aac20f4b2cd6c241493cc948c1ce8800b14797fdefee2b1f494d7b9f
|
3 |
+
size 15920
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb7617cd6b75e491a348879fed069c07f2a2f52647a39a51812a3039227e011e
|
3 |
+
size 15920
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2aa9e524787be3fd2130cbb1a33ce0d917090fdf18cf026905505c6c1f67c64
|
3 |
+
size 15920
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:048ab222ccc631300416028b25a3132d82f849b7a32356b338d26e9eef8ae3fb
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9670c00e2e4b001bb5f458d57d181a0ae7bf4587cc05947eef4b84e438e4178
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da5ed04d69158bc88c3dc621620dae175703ddfab9924471e44fc939b4c4386c
|
3 |
+
size 15920
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:901dc2645bb26444439097220bce3343e3d0a315e276f271fbd122fb8170ad53
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 1280,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.12325706802249442,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0015407133502811801,
|
13 |
+
"grad_norm": 48.20575104273089,
|
14 |
+
"learning_rate": 4.615384615384616e-06,
|
15 |
+
"loss": 1.3971,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0030814267005623602,
|
20 |
+
"grad_norm": 33.11975747134839,
|
21 |
+
"learning_rate": 9.230769230769232e-06,
|
22 |
+
"loss": 1.4053,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004622140050843541,
|
27 |
+
"grad_norm": 39.826606299507084,
|
28 |
+
"learning_rate": 1.3846153846153847e-05,
|
29 |
+
"loss": 1.3472,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0061628534011247205,
|
34 |
+
"grad_norm": 6.773742739301677,
|
35 |
+
"learning_rate": 1.8461538461538465e-05,
|
36 |
+
"loss": 1.1311,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.007703566751405901,
|
41 |
+
"grad_norm": 12.278712041952108,
|
42 |
+
"learning_rate": 2.307692307692308e-05,
|
43 |
+
"loss": 0.9715,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.009244280101687081,
|
48 |
+
"grad_norm": 3.776870082439811,
|
49 |
+
"learning_rate": 2.7692307692307694e-05,
|
50 |
+
"loss": 0.8937,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.010784993451968261,
|
55 |
+
"grad_norm": 6.812660145408396,
|
56 |
+
"learning_rate": 2.9999955171465948e-05,
|
57 |
+
"loss": 0.8472,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.012325706802249441,
|
62 |
+
"grad_norm": 14.1920325479403,
|
63 |
+
"learning_rate": 2.9999596544801216e-05,
|
64 |
+
"loss": 0.8418,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.013866420152530621,
|
69 |
+
"grad_norm": 4.760185564415112,
|
70 |
+
"learning_rate": 2.999887930004599e-05,
|
71 |
+
"loss": 0.8275,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.015407133502811803,
|
76 |
+
"grad_norm": 5.64069685533569,
|
77 |
+
"learning_rate": 2.9997803454348518e-05,
|
78 |
+
"loss": 0.8085,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01694784685309298,
|
83 |
+
"grad_norm": 8.910755610595423,
|
84 |
+
"learning_rate": 2.9996369033430674e-05,
|
85 |
+
"loss": 0.8105,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.018488560203374162,
|
90 |
+
"grad_norm": 7.128375140746789,
|
91 |
+
"learning_rate": 2.9994576071587345e-05,
|
92 |
+
"loss": 0.7647,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.020029273553655344,
|
97 |
+
"grad_norm": 4.883749519467239,
|
98 |
+
"learning_rate": 2.9992424611685575e-05,
|
99 |
+
"loss": 0.7472,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.021569986903936522,
|
104 |
+
"grad_norm": 6.669698248447361,
|
105 |
+
"learning_rate": 2.9989914705163582e-05,
|
106 |
+
"loss": 0.7644,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.023110700254217704,
|
111 |
+
"grad_norm": 8.814324372744018,
|
112 |
+
"learning_rate": 2.9987046412029506e-05,
|
113 |
+
"loss": 0.7642,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.024651413604498882,
|
118 |
+
"grad_norm": 5.408352128962619,
|
119 |
+
"learning_rate": 2.9983819800859976e-05,
|
120 |
+
"loss": 0.7506,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.026192126954780064,
|
125 |
+
"grad_norm": 4.916006313310609,
|
126 |
+
"learning_rate": 2.998023494879848e-05,
|
127 |
+
"loss": 0.7086,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.027732840305061242,
|
132 |
+
"grad_norm": 6.4968532868316515,
|
133 |
+
"learning_rate": 2.9976291941553508e-05,
|
134 |
+
"loss": 0.7302,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.029273553655342423,
|
139 |
+
"grad_norm": 5.414282856209666,
|
140 |
+
"learning_rate": 2.9971990873396512e-05,
|
141 |
+
"loss": 0.7389,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.030814267005623605,
|
146 |
+
"grad_norm": 35.78019922037886,
|
147 |
+
"learning_rate": 2.996733184715964e-05,
|
148 |
+
"loss": 0.7247,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.03235498035590478,
|
153 |
+
"grad_norm": 4.344484335761467,
|
154 |
+
"learning_rate": 2.9962314974233306e-05,
|
155 |
+
"loss": 0.7239,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.03389569370618596,
|
160 |
+
"grad_norm": 4.761393885682967,
|
161 |
+
"learning_rate": 2.995694037456349e-05,
|
162 |
+
"loss": 0.7219,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03543640705646715,
|
167 |
+
"grad_norm": 6.082748106236669,
|
168 |
+
"learning_rate": 2.995120817664889e-05,
|
169 |
+
"loss": 0.7036,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.036977120406748325,
|
174 |
+
"grad_norm": 7.925002223835823,
|
175 |
+
"learning_rate": 2.9945118517537857e-05,
|
176 |
+
"loss": 0.6795,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0385178337570295,
|
181 |
+
"grad_norm": 4.33748938479485,
|
182 |
+
"learning_rate": 2.9938671542825102e-05,
|
183 |
+
"loss": 0.6894,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.04005854710731069,
|
188 |
+
"grad_norm": 3.419861222736367,
|
189 |
+
"learning_rate": 2.993186740664821e-05,
|
190 |
+
"loss": 0.674,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.041599260457591866,
|
195 |
+
"grad_norm": 4.418012569894865,
|
196 |
+
"learning_rate": 2.9924706271683993e-05,
|
197 |
+
"loss": 0.7091,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.043139973807873044,
|
202 |
+
"grad_norm": 5.5535932232942065,
|
203 |
+
"learning_rate": 2.9917188309144548e-05,
|
204 |
+
"loss": 0.7114,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.04468068715815422,
|
209 |
+
"grad_norm": 5.346051172390458,
|
210 |
+
"learning_rate": 2.990931369877321e-05,
|
211 |
+
"loss": 0.7092,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04622140050843541,
|
216 |
+
"grad_norm": 5.04585392782648,
|
217 |
+
"learning_rate": 2.9901082628840216e-05,
|
218 |
+
"loss": 0.7079,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.047762113858716586,
|
223 |
+
"grad_norm": 5.3108067226217095,
|
224 |
+
"learning_rate": 2.989249529613823e-05,
|
225 |
+
"loss": 0.7044,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.049302827208997764,
|
230 |
+
"grad_norm": 12.936374781230974,
|
231 |
+
"learning_rate": 2.9883551905977647e-05,
|
232 |
+
"loss": 0.6795,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.05084354055927895,
|
237 |
+
"grad_norm": 4.969368758151501,
|
238 |
+
"learning_rate": 2.987425267218164e-05,
|
239 |
+
"loss": 0.7365,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.05238425390956013,
|
244 |
+
"grad_norm": 17.59963354249395,
|
245 |
+
"learning_rate": 2.9864597817081083e-05,
|
246 |
+
"loss": 0.6459,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.053924967259841305,
|
251 |
+
"grad_norm": 4.287709062556245,
|
252 |
+
"learning_rate": 2.985458757150924e-05,
|
253 |
+
"loss": 0.7151,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.055465680610122484,
|
258 |
+
"grad_norm": 2.353889201419343,
|
259 |
+
"learning_rate": 2.9844222174796224e-05,
|
260 |
+
"loss": 0.6982,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.05700639396040367,
|
265 |
+
"grad_norm": 6.487203178892158,
|
266 |
+
"learning_rate": 2.983350187476328e-05,
|
267 |
+
"loss": 0.6946,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05854710731068485,
|
272 |
+
"grad_norm": 8.604226568596971,
|
273 |
+
"learning_rate": 2.982242692771688e-05,
|
274 |
+
"loss": 0.7024,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.060087820660966025,
|
279 |
+
"grad_norm": 3.7381224404208107,
|
280 |
+
"learning_rate": 2.9810997598442558e-05,
|
281 |
+
"loss": 0.6813,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.06162853401124721,
|
286 |
+
"grad_norm": 7.21302363512955,
|
287 |
+
"learning_rate": 2.9799214160198622e-05,
|
288 |
+
"loss": 0.6572,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.06316924736152839,
|
293 |
+
"grad_norm": 7.446657585655329,
|
294 |
+
"learning_rate": 2.9787076894709592e-05,
|
295 |
+
"loss": 0.6612,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.06470996071180957,
|
300 |
+
"grad_norm": 16.149479699980372,
|
301 |
+
"learning_rate": 2.977458609215946e-05,
|
302 |
+
"loss": 0.6823,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.06625067406209074,
|
307 |
+
"grad_norm": 3.654646693112352,
|
308 |
+
"learning_rate": 2.9761742051184786e-05,
|
309 |
+
"loss": 0.6941,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.06779138741237192,
|
314 |
+
"grad_norm": 7.468345726914931,
|
315 |
+
"learning_rate": 2.9748545078867524e-05,
|
316 |
+
"loss": 0.6254,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06933210076265311,
|
321 |
+
"grad_norm": 6.559292545318311,
|
322 |
+
"learning_rate": 2.9734995490727696e-05,
|
323 |
+
"loss": 0.6977,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.0708728141129343,
|
328 |
+
"grad_norm": 8.749994768413615,
|
329 |
+
"learning_rate": 2.9721093610715844e-05,
|
330 |
+
"loss": 0.6742,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.07241352746321547,
|
335 |
+
"grad_norm": 14.746822726186753,
|
336 |
+
"learning_rate": 2.9706839771205282e-05,
|
337 |
+
"loss": 0.6986,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.07395424081349665,
|
342 |
+
"grad_norm": 2.1125271451210494,
|
343 |
+
"learning_rate": 2.9692234312984156e-05,
|
344 |
+
"loss": 0.6708,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.07549495416377783,
|
349 |
+
"grad_norm": 4.191787346884265,
|
350 |
+
"learning_rate": 2.9677277585247296e-05,
|
351 |
+
"loss": 0.6839,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.077035667514059,
|
356 |
+
"grad_norm": 6.099946769106883,
|
357 |
+
"learning_rate": 2.9661969945587867e-05,
|
358 |
+
"loss": 0.7253,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.07857638086434018,
|
363 |
+
"grad_norm": 8.272898482647978,
|
364 |
+
"learning_rate": 2.9646311759988804e-05,
|
365 |
+
"loss": 0.6972,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.08011709421462138,
|
370 |
+
"grad_norm": 12.38761120543235,
|
371 |
+
"learning_rate": 2.9630303402814095e-05,
|
372 |
+
"loss": 0.7174,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.08165780756490255,
|
377 |
+
"grad_norm": 7.826170900143438,
|
378 |
+
"learning_rate": 2.961394525679979e-05,
|
379 |
+
"loss": 0.7227,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.08319852091518373,
|
384 |
+
"grad_norm": 3.926770198625081,
|
385 |
+
"learning_rate": 2.9597237713044888e-05,
|
386 |
+
"loss": 0.6682,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.08473923426546491,
|
391 |
+
"grad_norm": 3.3408474311965692,
|
392 |
+
"learning_rate": 2.9580181171001962e-05,
|
393 |
+
"loss": 0.6634,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.08627994761574609,
|
398 |
+
"grad_norm": 15.954087186336258,
|
399 |
+
"learning_rate": 2.956277603846761e-05,
|
400 |
+
"loss": 0.7005,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.08782066096602727,
|
405 |
+
"grad_norm": 3.3366594091813475,
|
406 |
+
"learning_rate": 2.9545022731572723e-05,
|
407 |
+
"loss": 0.6752,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.08936137431630845,
|
412 |
+
"grad_norm": 4.359220549879328,
|
413 |
+
"learning_rate": 2.9526921674772522e-05,
|
414 |
+
"loss": 0.6985,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.09090208766658964,
|
419 |
+
"grad_norm": 5.585924353950877,
|
420 |
+
"learning_rate": 2.95084733008364e-05,
|
421 |
+
"loss": 0.6729,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.09244280101687082,
|
426 |
+
"grad_norm": 2.5002732127626075,
|
427 |
+
"learning_rate": 2.94896780508376e-05,
|
428 |
+
"loss": 0.6881,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.093983514367152,
|
433 |
+
"grad_norm": 8.22666868773466,
|
434 |
+
"learning_rate": 2.9470536374142656e-05,
|
435 |
+
"loss": 0.6918,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.09552422771743317,
|
440 |
+
"grad_norm": 14.050897991765508,
|
441 |
+
"learning_rate": 2.9451048728400644e-05,
|
442 |
+
"loss": 0.6584,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.09706494106771435,
|
447 |
+
"grad_norm": 3.117445397285045,
|
448 |
+
"learning_rate": 2.9431215579532253e-05,
|
449 |
+
"loss": 0.6495,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.09860565441799553,
|
454 |
+
"grad_norm": 7.000286096448409,
|
455 |
+
"learning_rate": 2.9411037401718628e-05,
|
456 |
+
"loss": 0.6568,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.1001463677682767,
|
461 |
+
"grad_norm": 3.09698455955492,
|
462 |
+
"learning_rate": 2.939051467739006e-05,
|
463 |
+
"loss": 0.7095,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.1016870811185579,
|
468 |
+
"grad_norm": 4.163429426840949,
|
469 |
+
"learning_rate": 2.936964789721442e-05,
|
470 |
+
"loss": 0.6573,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.10322779446883908,
|
475 |
+
"grad_norm": 3.282543980811516,
|
476 |
+
"learning_rate": 2.934843756008546e-05,
|
477 |
+
"loss": 0.6901,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.10476850781912025,
|
482 |
+
"grad_norm": 7.4918954929572115,
|
483 |
+
"learning_rate": 2.932688417311085e-05,
|
484 |
+
"loss": 0.6826,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.10630922116940143,
|
489 |
+
"grad_norm": 49.53066344289919,
|
490 |
+
"learning_rate": 2.9304988251600084e-05,
|
491 |
+
"loss": 0.6668,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.10784993451968261,
|
496 |
+
"grad_norm": 23.218366206451197,
|
497 |
+
"learning_rate": 2.9282750319052154e-05,
|
498 |
+
"loss": 0.6643,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.10939064786996379,
|
503 |
+
"grad_norm": 2.59944116748961,
|
504 |
+
"learning_rate": 2.9260170907143012e-05,
|
505 |
+
"loss": 0.6709,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.11093136122024497,
|
510 |
+
"grad_norm": 4.59006482180365,
|
511 |
+
"learning_rate": 2.9237250555712887e-05,
|
512 |
+
"loss": 0.6878,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.11247207457052616,
|
517 |
+
"grad_norm": 3.1508976338573507,
|
518 |
+
"learning_rate": 2.9213989812753366e-05,
|
519 |
+
"loss": 0.6512,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.11401278792080734,
|
524 |
+
"grad_norm": 4.5342197552006835,
|
525 |
+
"learning_rate": 2.9190389234394285e-05,
|
526 |
+
"loss": 0.6687,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.11555350127108852,
|
531 |
+
"grad_norm": 6.514898099534209,
|
532 |
+
"learning_rate": 2.9166449384890446e-05,
|
533 |
+
"loss": 0.6868,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.1170942146213697,
|
538 |
+
"grad_norm": 5.1251296980659005,
|
539 |
+
"learning_rate": 2.9142170836608115e-05,
|
540 |
+
"loss": 0.6869,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.11863492797165087,
|
545 |
+
"grad_norm": 5.896478552497953,
|
546 |
+
"learning_rate": 2.9117554170011352e-05,
|
547 |
+
"loss": 0.667,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.12017564132193205,
|
552 |
+
"grad_norm": 3.4672489526983483,
|
553 |
+
"learning_rate": 2.909259997364811e-05,
|
554 |
+
"loss": 0.6674,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.12171635467221323,
|
559 |
+
"grad_norm": 5.413662982418376,
|
560 |
+
"learning_rate": 2.9067308844136193e-05,
|
561 |
+
"loss": 0.6891,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.12325706802249442,
|
566 |
+
"grad_norm": 5.807164850831801,
|
567 |
+
"learning_rate": 2.9041681386148966e-05,
|
568 |
+
"loss": 0.6447,
|
569 |
+
"step": 800
|
570 |
+
}
|
571 |
+
],
|
572 |
+
"logging_steps": 10,
|
573 |
+
"max_steps": 6490,
|
574 |
+
"num_input_tokens_seen": 0,
|
575 |
+
"num_train_epochs": 1,
|
576 |
+
"save_steps": 400,
|
577 |
+
"stateful_callbacks": {
|
578 |
+
"TrainerControl": {
|
579 |
+
"args": {
|
580 |
+
"should_epoch_stop": false,
|
581 |
+
"should_evaluate": false,
|
582 |
+
"should_log": false,
|
583 |
+
"should_save": true,
|
584 |
+
"should_training_stop": false
|
585 |
+
},
|
586 |
+
"attributes": {}
|
587 |
+
}
|
588 |
+
},
|
589 |
+
"total_flos": 7.289521573986304e+18,
|
590 |
+
"train_batch_size": 4,
|
591 |
+
"trial_name": null,
|
592 |
+
"trial_params": null
|
593 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca3eb9606621dd3b3f8b506f95a7ce6bf2218992e9565b54ee61e2cecb502260
|
3 |
+
size 6392
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|