sumuks commited on
Commit
ff59b6e
·
verified ·
1 Parent(s): 1eb06b9

End of training

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-7B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - sumuks/openreview_wintermute_0.1_training_data
10
+ model-index:
11
+ - name: purple-wintermute-0.1-7b
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ base_model: Qwen/Qwen2.5-7B
24
+ hub_model_id: sumuks/purple-wintermute-0.1-7b
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+ bf16: true
31
+ hf_use_auth_token: true
32
+
33
+ plugins:
34
+ - axolotl.integrations.liger.LigerPlugin
35
+ liger_rope: true
36
+ liger_rms_norm: true
37
+ liger_glu_activation: true
38
+ liger_layer_norm: true
39
+ liger_fused_linear_cross_entropy: true
40
+ save_safetensors:
41
+
42
+ datasets:
43
+ - path: sumuks/openreview_wintermute_0.1_training_data
44
+ type: completion
45
+ field: text
46
+ dataset_prepared_path: .axolotl_cache_data/wintermute_0.1
47
+ shuffle_merged_datasets: true
48
+ # dataset_exact_deduplication: true
49
+ val_set_size: 0.005
50
+ output_dir: ./../../outputs/purple-wintermute-0.1-7b
51
+ push_dataset_to_hub: sumuks/purple_wintermute_0.1_training_data_in_progress
52
+
53
+ sequence_length: 2048
54
+ sample_packing: true
55
+ pad_to_sequence_len: true
56
+
57
+ adapter: lora
58
+ lora_r: 256
59
+ lora_alpha: 32
60
+ lora_dropout: 0.05
61
+ peft_use_rslora: true
62
+ lora_target_linear: true
63
+
64
+ gradient_accumulation_steps: 1
65
+ micro_batch_size: 32
66
+ eval_batch_size: 1
67
+ num_epochs: 3
68
+ learning_rate: 5e-5
69
+ warmup_ratio: 0.05
70
+ evals_per_epoch: 10
71
+ saves_per_epoch: 5
72
+ gradient_checkpointing: true
73
+ lr_scheduler: cosine
74
+ optimizer: paged_adamw_8bit
75
+
76
+ profiler_steps: 100
77
+ save_safetensors: true
78
+ train_on_inputs: true
79
+ wandb_project: wintermute
80
+ wandb_name: purple-wintermute-0.1-7b
81
+ deepspeed: deepspeed_configs/zero1.json
82
+ ```
83
+
84
+ </details><br>
85
+
86
+ # purple-wintermute-0.1-7b
87
+
88
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.1_training_data dataset.
89
+ It achieves the following results on the evaluation set:
90
+ - Loss: 1.4027
91
+
92
+ ## Model description
93
+
94
+ More information needed
95
+
96
+ ## Intended uses & limitations
97
+
98
+ More information needed
99
+
100
+ ## Training and evaluation data
101
+
102
+ More information needed
103
+
104
+ ## Training procedure
105
+
106
+ ### Training hyperparameters
107
+
108
+ The following hyperparameters were used during training:
109
+ - learning_rate: 5e-05
110
+ - train_batch_size: 32
111
+ - eval_batch_size: 1
112
+ - seed: 42
113
+ - distributed_type: multi-GPU
114
+ - num_devices: 8
115
+ - total_train_batch_size: 256
116
+ - total_eval_batch_size: 8
117
+ - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
118
+ - lr_scheduler_type: cosine
119
+ - lr_scheduler_warmup_steps: 386
120
+ - num_epochs: 3
121
+
122
+ ### Training results
123
+
124
+ | Training Loss | Epoch | Step | Validation Loss |
125
+ |:-------------:|:------:|:----:|:---------------:|
126
+ | 1.8108 | 0.1002 | 258 | 1.9127 |
127
+ | 1.6982 | 0.2004 | 516 | 1.8592 |
128
+ | 1.663 | 0.3006 | 774 | 1.8258 |
129
+ | 1.585 | 0.4008 | 1032 | 1.7978 |
130
+ | 1.5201 | 0.5010 | 1290 | 1.7578 |
131
+ | 1.4313 | 0.6012 | 1548 | 1.7181 |
132
+ | 1.3256 | 0.7014 | 1806 | 1.6692 |
133
+ | 1.2364 | 0.8016 | 2064 | 1.6194 |
134
+ | 1.161 | 0.9017 | 2322 | 1.5741 |
135
+ | 1.1284 | 1.0016 | 2580 | 1.5281 |
136
+ | 1.0433 | 1.1017 | 2838 | 1.4999 |
137
+ | 1.0058 | 1.2019 | 3096 | 1.4770 |
138
+ | 1.0179 | 1.3021 | 3354 | 1.4603 |
139
+ | 0.9993 | 1.4023 | 3612 | 1.4409 |
140
+ | 0.99 | 1.5025 | 3870 | 1.4319 |
141
+ | 0.9971 | 1.6027 | 4128 | 1.4222 |
142
+ | 0.9626 | 1.7029 | 4386 | 1.4126 |
143
+ | 0.9396 | 1.8031 | 4644 | 1.4083 |
144
+ | 0.9497 | 1.9033 | 4902 | 1.4041 |
145
+ | 0.901 | 2.0031 | 5160 | 1.4068 |
146
+ | 0.9222 | 2.1033 | 5418 | 1.4081 |
147
+ | 0.8882 | 2.2035 | 5676 | 1.4060 |
148
+ | 0.9253 | 2.3037 | 5934 | 1.4043 |
149
+ | 0.8687 | 2.4039 | 6192 | 1.4035 |
150
+ | 0.9058 | 2.5041 | 6450 | 1.4025 |
151
+ | 0.8624 | 2.6043 | 6708 | 1.4033 |
152
+ | 0.8928 | 2.7045 | 6966 | 1.4028 |
153
+ | 0.874 | 2.8047 | 7224 | 1.4029 |
154
+ | 0.8892 | 2.9049 | 7482 | 1.4027 |
155
+
156
+
157
+ ### Framework versions
158
+
159
+ - PEFT 0.14.0
160
+ - Transformers 4.48.0
161
+ - Pytorch 2.5.1
162
+ - Datasets 3.1.0
163
+ - Tokenizers 0.21.0