--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer datasets: - sumuks/openreview_wintermute_0.1_training_data model-index: - name: purple-wintermute-0.1-7b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B hub_model_id: sumuks/purple-wintermute-0.1-7b trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false bf16: true hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true save_safetensors: datasets: - path: sumuks/openreview_wintermute_0.1_training_data type: completion field: text dataset_prepared_path: .axolotl_cache_data/wintermute_0.1 shuffle_merged_datasets: true # dataset_exact_deduplication: true val_set_size: 0.005 output_dir: ./../../outputs/purple-wintermute-0.1-7b push_dataset_to_hub: sumuks/purple_wintermute_0.1_training_data_in_progress sequence_length: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora lora_r: 256 lora_alpha: 32 lora_dropout: 0.05 peft_use_rslora: true lora_target_linear: true gradient_accumulation_steps: 1 micro_batch_size: 32 eval_batch_size: 1 num_epochs: 3 learning_rate: 5e-5 warmup_ratio: 0.05 evals_per_epoch: 10 saves_per_epoch: 5 gradient_checkpointing: true lr_scheduler: cosine optimizer: paged_adamw_8bit profiler_steps: 100 save_safetensors: true train_on_inputs: true wandb_project: wintermute wandb_name: purple-wintermute-0.1-7b deepspeed: deepspeed_configs/zero1.json ```

# purple-wintermute-0.1-7b This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.1_training_data dataset. It achieves the following results on the evaluation set: - Loss: 1.4027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 8 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 386 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8108 | 0.1002 | 258 | 1.9127 | | 1.6982 | 0.2004 | 516 | 1.8592 | | 1.663 | 0.3006 | 774 | 1.8258 | | 1.585 | 0.4008 | 1032 | 1.7978 | | 1.5201 | 0.5010 | 1290 | 1.7578 | | 1.4313 | 0.6012 | 1548 | 1.7181 | | 1.3256 | 0.7014 | 1806 | 1.6692 | | 1.2364 | 0.8016 | 2064 | 1.6194 | | 1.161 | 0.9017 | 2322 | 1.5741 | | 1.1284 | 1.0016 | 2580 | 1.5281 | | 1.0433 | 1.1017 | 2838 | 1.4999 | | 1.0058 | 1.2019 | 3096 | 1.4770 | | 1.0179 | 1.3021 | 3354 | 1.4603 | | 0.9993 | 1.4023 | 3612 | 1.4409 | | 0.99 | 1.5025 | 3870 | 1.4319 | | 0.9971 | 1.6027 | 4128 | 1.4222 | | 0.9626 | 1.7029 | 4386 | 1.4126 | | 0.9396 | 1.8031 | 4644 | 1.4083 | | 0.9497 | 1.9033 | 4902 | 1.4041 | | 0.901 | 2.0031 | 5160 | 1.4068 | | 0.9222 | 2.1033 | 5418 | 1.4081 | | 0.8882 | 2.2035 | 5676 | 1.4060 | | 0.9253 | 2.3037 | 5934 | 1.4043 | | 0.8687 | 2.4039 | 6192 | 1.4035 | | 0.9058 | 2.5041 | 6450 | 1.4025 | | 0.8624 | 2.6043 | 6708 | 1.4033 | | 0.8928 | 2.7045 | 6966 | 1.4028 | | 0.874 | 2.8047 | 7224 | 1.4029 | | 0.8892 | 2.9049 | 7482 | 1.4027 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.21.0