dukebot-qac-v1-merged / handler.py
suneeln-duke's picture
Update handler.py
06a9ba3 verified
from typing import Any, Dict, List
import torch, re
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler:
def __init__(self, path=""):
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code = True)
model = AutoModelForCausalLM.from_pretrained(
path,
return_dict = True,
device_map = "auto",
load_in_8bit = True,
torch_dtype = dtype,
trust_remote_code = True,
)
gen_config = model.generation_config
gen_config.max_new_tokens = 100
gen_config.temperature = 0
gen_config.num_return_sequences = 1
gen_config.pad_token_id = tokenizer.eos_token_id
gen_config.eos_token_id = tokenizer.eos_token_id
self.generation_config = gen_config
self.pipeline = transformers.pipeline(
'text-generation', model=model, tokenizer=tokenizer
)
def __call__(self, data: Dict[dict, Any]) -> Dict[str, Any]:
inputs = data.pop("inputs", data)
question = data.pop("question", None)
context = data.pop("context", None)
temp = data.pop("temp", None)
max_tokens = data.pop("max_tokens", None)
bos_token = "<s>"
original_system_message = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
system_message = "Use the provided context followed by a question to answer it."
full_prompt = f"""<s>### Instruction:
{system_message}
### Context:
{context}
### Question:
{question}
### Answer:
"""
full_prompt = " ".join(full_prompt.split())
self.generation_config.max_new_tokens = max_tokens
self.generation_config.temperature = temp
result = self.pipeline(full_prompt, generation_config = self.generation_config)[0]['generated_text']
match = re.search(r'### Answer:(.*?)###', result, re.DOTALL)
if match:
result = match.group(1).strip()
pattern = r"### Answer:(.*)"
match = re.search(pattern, result)
if match:
result = match.group(1).strip()
return result