File size: 13,180 Bytes
9465da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import logging
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from torch.cuda.amp import autocast, GradScaler
from torch.optim.lr_scheduler import ReduceLROnPlateau
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
import optuna
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Constants
RANDOM_SEED = 42
TEST_SIZE = 0.2
VALIDATION_SIZE = 200
def load_data(start_year=2000, end_year=2017):
dfs = []
for year in range(start_year, end_year + 1):
file_path = f'atp_matches_{year}.csv'
try:
df = pd.read_csv(file_path, low_memory=False)
required_columns = ['tourney_id', 'surface', 'winner_id', 'loser_id', 'winner_name', 'loser_name',
'winner_age', 'loser_age', 'winner_rank', 'loser_rank', 'tourney_date']
if not all(col in df.columns for col in required_columns):
logging.warning(f"File {file_path} is missing some required columns. Skipping this file.")
continue
dfs.append(df)
logging.info(f"Data loaded successfully from {file_path}")
except FileNotFoundError:
logging.warning(f"File not found: {file_path}")
except pd.errors.EmptyDataError:
logging.warning(f"Empty file: {file_path}")
except Exception as e:
logging.error(f"Error loading data from {file_path}: {str(e)}")
if not dfs:
raise ValueError("No data files were successfully loaded.")
combined_df = pd.concat(dfs, ignore_index=True)
if combined_df.empty:
raise ValueError("The combined DataFrame is empty after processing all files.")
return combined_df
def preprocess_data(df):
label_encoders = {}
for col in ['tourney_id', 'surface', 'winner_id', 'loser_id']:
df[col] = df[col].astype(str)
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
label_encoders[col] = le
df['tourney_date'] = pd.to_datetime(df['tourney_date'], format='%Y%m%d', errors='coerce')
df = df.dropna(subset=['tourney_date'])
return df, label_encoders
def engineer_features(df):
numeric_cols = ['winner_age', 'loser_age', 'winner_rank', 'loser_rank']
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors='coerce')
df['age_difference'] = df['winner_age'] - df['loser_age']
df['rank_difference'] = df['loser_rank'] - df['winner_rank']
numeric_columns = numeric_cols + ['age_difference', 'rank_difference']
df = df.dropna(subset=numeric_columns)
return df, numeric_columns
class JointEmbeddedModel(nn.Module):
def __init__(self, categorical_dims, numerical_dim, embedding_dim, hidden_dim, dropout_rate=0.3):
super().__init__()
self.embeddings = nn.ModuleList([nn.Embedding(dim, embedding_dim) for dim in categorical_dims])
self.fc1 = nn.Linear(len(categorical_dims) * embedding_dim + numerical_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim // 2)
self.fc3 = nn.Linear(hidden_dim // 2, 1)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout_rate)
def forward(self, x_cat, x_num):
embedded = [emb(x_cat[:, i]) for i, emb in enumerate(self.embeddings)]
x = torch.cat(embedded + [x_num], dim=1)
x = self.dropout(self.relu(self.fc1(x)))
x = self.dropout(self.relu(self.fc2(x)))
return self.fc3(x).squeeze()
def create_dataloader(X, y, batch_size=64):
x_cat, x_num = X
# Ensure tensors are not empty
if len(x_cat) == 0 or len(x_num) == 0:
raise ValueError("Input data for dataloader is empty.")
dataset = TensorDataset(torch.tensor(x_cat, dtype=torch.long),
torch.tensor(x_num, dtype=torch.float32),
torch.tensor(y, dtype=torch.float32))
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
def train_model(model, dataloader, val_data, epochs=20, learning_rate=0.001, weight_decay=0, patience=5):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=patience, verbose=True)
scaler = GradScaler() if device.type == 'cuda' else None
best_val_loss = float('inf')
early_stopping_counter = 0
for epoch in range(epochs):
model.train()
total_loss = 0
for x_cat, x_num, y in dataloader:
x_cat, x_num, y = x_cat.to(device), x_num.to(device), y.to(device)
optimizer.zero_grad()
if scaler:
with autocast(device_type='cuda'):
outputs = model(x_cat, x_num)
loss = criterion(outputs, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
outputs = model(x_cat, x_num)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
val_predictions = evaluate_model(model, val_data[0])
val_loss = np.mean((val_predictions - val_data[1]) ** 2)
scheduler.step(val_loss)
logging.info(f"Epoch {epoch+1}/{epochs}, Train Loss: {avg_loss:.4f}, Val Loss: {val_loss:.4f}")
if val_loss < best_val_loss:
best_val_loss = val_loss
early_stopping_counter = 0
torch.save(model.state_dict(), 'best_model.pt')
else:
early_stopping_counter += 1
if early_stopping_counter >= patience:
logging.info(f"Early stopping triggered after {epoch+1} epochs")
break
def evaluate_model(model, X):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
x_cat, x_num = X
if len(x_cat.shape) == 1:
x_cat = x_cat.reshape(1, -1)
if len(x_num.shape) == 1:
x_num = x_num.reshape(1, -1)
x_cat = torch.tensor(x_cat, dtype=torch.long).to(device)
x_num = torch.tensor(x_num, dtype=torch.float32).to(device)
with torch.no_grad():
outputs = model(x_cat, x_num)
return outputs.cpu().numpy()
def objective(trial):
embedding_dim = trial.suggest_int('embedding_dim', 8, 64)
hidden_dim = trial.suggest_int('hidden_dim', 32, 256)
learning_rate = trial.suggest_float('learning_rate', 1e-5, 1e-1, log=True)
batch_size = trial.suggest_categorical('batch_size', [32, 64, 128, 256])
weight_decay = trial.suggest_float('weight_decay', 1e-8, 1e-3, log=True)
dropout_rate = trial.suggest_float('dropout_rate', 0.1, 0.5)
model = JointEmbeddedModel(categorical_dims, numerical_dim, embedding_dim, hidden_dim, dropout_rate)
dataloader = create_dataloader(X_train, y_train, batch_size=batch_size)
train_model(model, dataloader, (X_val, y_val), epochs=10, learning_rate=learning_rate, weight_decay=weight_decay)
val_predictions = evaluate_model(model, X_val)
val_loss = np.mean((val_predictions - y_val) ** 2)
return val_loss
def enhanced_anomaly_detection(model, X, df_subset, eps=0.5, min_samples=5, threshold=None):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
x_cat, x_num = X
if len(x_cat.shape) == 1:
x_cat = x_cat.reshape(-1, len(categorical_columns))
if len(x_num.shape) == 1:
x_num = x_num.reshape(-1, len(numeric_columns))
x_cat = torch.tensor(x_cat, dtype=torch.long).to(device)
x_num = torch.tensor(x_num, dtype=torch.float32).to(device)
with torch.no_grad():
embedded = [emb(x_cat[:, i]) for i, emb in enumerate(model.embeddings)]
embeddings = torch.cat(embedded, dim=1).cpu().numpy()
outputs = model(x_cat, x_num).cpu().numpy()
scaler = StandardScaler()
embeddings = scaler.fit_transform(embeddings)
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
labels = dbscan.fit_predict(embeddings)
df_subset['anomaly'] = labels
df_subset['expected_rank_difference'] = outputs
if threshold is None:
threshold = np.std(df_subset['rank_difference'] - df_subset['expected_rank_difference']) * 2
df_subset['positive_anomaly'] = (df_subset['rank_difference'] - df_subset['expected_rank_difference']) > threshold
df_subset['negative_anomaly'] = (df_subset['expected_rank_difference'] - df_subset['rank_difference']) > threshold
anomalies = df_subset[(df_subset['positive_anomaly']) | (df_subset['negative_anomaly'])]
positive_anomalies = anomalies[anomalies['positive_anomaly']]
negative_anomalies = anomalies[anomalies['negative_anomaly']]
logging.info(f"Positive Anomalies: {len(positive_anomalies)}")
logging.info(f"Negative Anomalies: {len(negative_anomalies)}")
# Count positive and negative anomalies per player, year, and tournament
player_positive_anomalies = pd.concat([
positive_anomalies['winner_name'],
positive_anomalies['loser_name']
]).value_counts()
player_negative_anomalies = pd.concat([
negative_anomalies['winner_name'],
negative_anomalies['loser_name']
]).value_counts()
year_anomalies = anomalies['tourney_date'].dt.year.value_counts()
tournament_anomalies = anomalies['tourney_id'].value_counts()
# Save player anomalies counts to CSV
player_positive_anomalies.to_csv('players_with_most_positive_anomalies.csv', header=['positive_anomalies'])
player_negative_anomalies.to_csv('players_with_most_negative_anomalies.csv', header=['negative_anomalies'])
year_anomalies.to_csv('years_with_most_anomalies.csv', header=['anomalies'])
tournament_anomalies.to_csv('tournaments_with_most_anomalies.csv', header=['anomalies'])
# Plotting DBSCAN results
plt.figure(figsize=(10, 6))
reduced_embeddings = TSNE(n_components=2).fit_transform(embeddings)
plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1], c=labels, cmap='viridis', alpha=0.7)
plt.colorbar(label='Cluster Labels (Anomalies in -1)')
plt.title('DBSCAN Clustering of Embeddings for Anomaly Detection')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.savefig('anomaly_detection_plot.png')
plt.close()
return anomalies
if __name__ == "__main__":
try:
df = load_data()
df, label_encoders = preprocess_data(df)
df, numeric_columns = engineer_features(df)
categorical_columns = ['tourney_id', 'surface', 'winner_id', 'loser_id']
X_cat = df[categorical_columns].values
X_num = df[numeric_columns].values
y = df['rank_difference'].values
X_cat_train, X_cat_test, X_num_train, X_num_test, y_train, y_test, train_indices, test_indices = train_test_split(
X_cat, X_num, y, df.index, test_size=TEST_SIZE, random_state=RANDOM_SEED)
categorical_dims = [len(label_encoders[col].classes_) for col in categorical_columns]
numerical_dim = len(numeric_columns)
X_train = (X_cat_train, X_num_train)
X_val = (X_cat_test[:VALIDATION_SIZE], X_num_test[:VALIDATION_SIZE])
y_val = y_test[:VALIDATION_SIZE]
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=20)
best_params = study.best_params
logging.info(f"Best Hyperparameters: {best_params}")
model = JointEmbeddedModel(categorical_dims, numerical_dim, best_params['embedding_dim'],
best_params['hidden_dim'], best_params['dropout_rate'])
dataloader = create_dataloader(X_train, y_train, batch_size=best_params['batch_size'])
train_model(model, dataloader, (X_val, y_val), epochs=20, learning_rate=best_params['learning_rate'],
weight_decay=best_params['weight_decay'])
model.load_state_dict(torch.load('best_model.pt'))
test_predictions = evaluate_model(model, (X_cat_test, X_num_test))
test_mse = np.mean((test_predictions - y_test) ** 2)
logging.info(f"Final Test MSE: {test_mse}")
anomalies = enhanced_anomaly_detection(model, (X_cat_test, X_num_test), df.loc[test_indices])
# Save test predictions
np.save('test_predictions.npy', test_predictions)
# Save anomalies to CSV
anomalies.to_csv('anomalies.csv', index=False)
logging.info("Test predictions and anomalies saved successfully.")
torch.save(model.state_dict(), 'final_model.pt')
logging.info("Script execution completed successfully.")
except Exception as e:
logging.error(f"An error occurred during script execution: {str(e)}") |