|
from torch.utils import data as data |
|
from torchvision.transforms.functional import normalize |
|
|
|
from basicsr.data.data_util import (paired_paths_from_folder, |
|
paired_DP_paths_from_folder, |
|
paired_paths_from_lmdb, |
|
paired_paths_from_meta_info_file) |
|
from basicsr.data.transforms import augment, paired_random_crop, paired_random_crop_DP, random_augmentation |
|
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding, padding_DP, imfrombytesDP |
|
|
|
import random |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
|
|
class Dataset_PairedImage(data.Dataset): |
|
"""Paired image dataset for image restoration. |
|
|
|
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and |
|
GT image pairs. |
|
|
|
There are three modes: |
|
1. 'lmdb': Use lmdb files. |
|
If opt['io_backend'] == lmdb. |
|
2. 'meta_info_file': Use meta information file to generate paths. |
|
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None. |
|
3. 'folder': Scan folders to generate paths. |
|
The rest. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
dataroot_lq (str): Data root path for lq. |
|
meta_info_file (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
filename_tmpl (str): Template for each filename. Note that the |
|
template excludes the file extension. Default: '{}'. |
|
gt_size (int): Cropped patched size for gt patches. |
|
geometric_augs (bool): Use geometric augmentations. |
|
|
|
scale (bool): Scale, which will be added automatically. |
|
phase (str): 'train' or 'val'. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(Dataset_PairedImage, self).__init__() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.mean = opt['mean'] if 'mean' in opt else None |
|
self.std = opt['std'] if 'std' in opt else None |
|
|
|
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq'] |
|
if 'filename_tmpl' in opt: |
|
self.filename_tmpl = opt['filename_tmpl'] |
|
else: |
|
self.filename_tmpl = '{}' |
|
|
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder] |
|
self.io_backend_opt['client_keys'] = ['lq', 'gt'] |
|
self.paths = paired_paths_from_lmdb( |
|
[self.lq_folder, self.gt_folder], ['lq', 'gt']) |
|
elif 'meta_info_file' in self.opt and self.opt[ |
|
'meta_info_file'] is not None: |
|
self.paths = paired_paths_from_meta_info_file( |
|
[self.lq_folder, self.gt_folder], ['lq', 'gt'], |
|
self.opt['meta_info_file'], self.filename_tmpl) |
|
else: |
|
self.paths = paired_paths_from_folder( |
|
[self.lq_folder, self.gt_folder], ['lq', 'gt'], |
|
self.filename_tmpl) |
|
|
|
if self.opt['phase'] == 'train': |
|
self.geometric_augs = opt['geometric_augs'] |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient( |
|
self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
scale = self.opt['scale'] |
|
index = index % len(self.paths) |
|
|
|
|
|
gt_path = self.paths[index]['gt_path'] |
|
img_bytes = self.file_client.get(gt_path, 'gt') |
|
try: |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
except: |
|
raise Exception("gt path {} not working".format(gt_path)) |
|
|
|
lq_path = self.paths[index]['lq_path'] |
|
img_bytes = self.file_client.get(lq_path, 'lq') |
|
try: |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
except: |
|
raise Exception("lq path {} not working".format(lq_path)) |
|
|
|
|
|
if self.opt['phase'] == 'train': |
|
gt_size = self.opt['gt_size'] |
|
|
|
img_gt, img_lq = padding(img_gt, img_lq, gt_size) |
|
|
|
|
|
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, |
|
gt_path) |
|
|
|
|
|
if self.geometric_augs: |
|
img_gt, img_lq = random_augmentation(img_gt, img_lq) |
|
|
|
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq], |
|
bgr2rgb=True, |
|
float32=True) |
|
|
|
if self.mean is not None or self.std is not None: |
|
normalize(img_lq, self.mean, self.std, inplace=True) |
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
label = self.get_label(lq_path,) |
|
return { |
|
'lq': img_lq, |
|
'gt': img_gt, |
|
'lq_path': lq_path, |
|
'gt_path': gt_path, |
|
'label': label |
|
} |
|
def get_label(self, lq_path): |
|
img_name = lq_path.split("/")[-1] |
|
if "im_" in img_name: |
|
return 0 |
|
elif '.jpg' in img_name: |
|
return 1 |
|
elif 'rain' in img_name: |
|
return 2 |
|
else: |
|
return 4 |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|
|
class Dataset_GaussianDenoising(data.Dataset): |
|
"""Paired image dataset for image restoration. |
|
|
|
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and |
|
GT image pairs. |
|
|
|
There are three modes: |
|
1. 'lmdb': Use lmdb files. |
|
If opt['io_backend'] == lmdb. |
|
2. 'meta_info_file': Use meta information file to generate paths. |
|
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None. |
|
3. 'folder': Scan folders to generate paths. |
|
The rest. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
meta_info_file (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
gt_size (int): Cropped patched size for gt patches. |
|
use_flip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h |
|
and w for implementation). |
|
|
|
scale (bool): Scale, which will be added automatically. |
|
phase (str): 'train' or 'val'. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(Dataset_GaussianDenoising, self).__init__() |
|
self.opt = opt |
|
|
|
if self.opt['phase'] == 'train': |
|
self.sigma_type = opt['sigma_type'] |
|
self.sigma_range = opt['sigma_range'] |
|
assert self.sigma_type in ['constant', 'random', 'choice'] |
|
else: |
|
self.sigma_test = opt['sigma_test'] |
|
self.in_ch = opt['in_ch'] |
|
|
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.mean = opt['mean'] if 'mean' in opt else None |
|
self.std = opt['std'] if 'std' in opt else None |
|
|
|
self.gt_folder = opt['dataroot_gt'] |
|
|
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.io_backend_opt['db_paths'] = [self.gt_folder] |
|
self.io_backend_opt['client_keys'] = ['gt'] |
|
self.paths = paths_from_lmdb(self.gt_folder) |
|
elif 'meta_info_file' in self.opt: |
|
with open(self.opt['meta_info_file'], 'r') as fin: |
|
self.paths = [ |
|
osp.join(self.gt_folder, |
|
line.split(' ')[0]) for line in fin |
|
] |
|
else: |
|
self.paths = sorted(list(scandir(self.gt_folder, full_path=True))) |
|
|
|
if self.opt['phase'] == 'train': |
|
self.geometric_augs = self.opt['geometric_augs'] |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient( |
|
self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
scale = self.opt['scale'] |
|
index = index % len(self.paths) |
|
|
|
|
|
gt_path = self.paths[index]['gt_path'] |
|
img_bytes = self.file_client.get(gt_path, 'gt') |
|
|
|
if self.in_ch == 3: |
|
try: |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
except: |
|
raise Exception("gt path {} not working".format(gt_path)) |
|
|
|
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2RGB) |
|
else: |
|
try: |
|
img_gt = imfrombytes(img_bytes, flag='grayscale', float32=True) |
|
except: |
|
raise Exception("gt path {} not working".format(gt_path)) |
|
|
|
img_gt = np.expand_dims(img_gt, axis=2) |
|
img_lq = img_gt.copy() |
|
|
|
|
|
|
|
if self.opt['phase'] == 'train': |
|
gt_size = self.opt['gt_size'] |
|
|
|
img_gt, img_lq = padding(img_gt, img_lq, gt_size) |
|
|
|
|
|
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, |
|
gt_path) |
|
|
|
if self.geometric_augs: |
|
img_gt, img_lq = random_augmentation(img_gt, img_lq) |
|
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq], |
|
bgr2rgb=False, |
|
float32=True) |
|
|
|
|
|
if self.sigma_type == 'constant': |
|
sigma_value = self.sigma_range |
|
elif self.sigma_type == 'random': |
|
sigma_value = random.uniform(self.sigma_range[0], self.sigma_range[1]) |
|
elif self.sigma_type == 'choice': |
|
sigma_value = random.choice(self.sigma_range) |
|
|
|
noise_level = torch.FloatTensor([sigma_value])/255.0 |
|
|
|
noise = torch.randn(img_lq.size()).mul_(noise_level).float() |
|
img_lq.add_(noise) |
|
|
|
else: |
|
np.random.seed(seed=0) |
|
img_lq += np.random.normal(0, self.sigma_test/255.0, img_lq.shape) |
|
|
|
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq], |
|
bgr2rgb=False, |
|
float32=True) |
|
|
|
return { |
|
'lq': img_lq, |
|
'gt': img_gt, |
|
'lq_path': gt_path, |
|
'gt_path': gt_path |
|
} |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|
|
class Dataset_DefocusDeblur_DualPixel_16bit(data.Dataset): |
|
def __init__(self, opt): |
|
super(Dataset_DefocusDeblur_DualPixel_16bit, self).__init__() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.mean = opt['mean'] if 'mean' in opt else None |
|
self.std = opt['std'] if 'std' in opt else None |
|
|
|
self.gt_folder, self.lqL_folder, self.lqR_folder = opt['dataroot_gt'], opt['dataroot_lqL'], opt['dataroot_lqR'] |
|
if 'filename_tmpl' in opt: |
|
self.filename_tmpl = opt['filename_tmpl'] |
|
else: |
|
self.filename_tmpl = '{}' |
|
|
|
self.paths = paired_DP_paths_from_folder( |
|
[self.lqL_folder, self.lqR_folder, self.gt_folder], ['lqL', 'lqR', 'gt'], |
|
self.filename_tmpl) |
|
|
|
if self.opt['phase'] == 'train': |
|
self.geometric_augs = self.opt['geometric_augs'] |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient( |
|
self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
scale = self.opt['scale'] |
|
index = index % len(self.paths) |
|
|
|
|
|
gt_path = self.paths[index]['gt_path'] |
|
img_bytes = self.file_client.get(gt_path, 'gt') |
|
try: |
|
img_gt = imfrombytesDP(img_bytes, float32=True) |
|
except: |
|
raise Exception("gt path {} not working".format(gt_path)) |
|
|
|
lqL_path = self.paths[index]['lqL_path'] |
|
img_bytes = self.file_client.get(lqL_path, 'lqL') |
|
try: |
|
img_lqL = imfrombytesDP(img_bytes, float32=True) |
|
except: |
|
raise Exception("lqL path {} not working".format(lqL_path)) |
|
|
|
lqR_path = self.paths[index]['lqR_path'] |
|
img_bytes = self.file_client.get(lqR_path, 'lqR') |
|
try: |
|
img_lqR = imfrombytesDP(img_bytes, float32=True) |
|
except: |
|
raise Exception("lqR path {} not working".format(lqR_path)) |
|
|
|
|
|
|
|
if self.opt['phase'] == 'train': |
|
gt_size = self.opt['gt_size'] |
|
|
|
img_lqL, img_lqR, img_gt = padding_DP(img_lqL, img_lqR, img_gt, gt_size) |
|
|
|
|
|
img_lqL, img_lqR, img_gt = paired_random_crop_DP(img_lqL, img_lqR, img_gt, gt_size, scale, gt_path) |
|
|
|
|
|
if self.geometric_augs: |
|
img_lqL, img_lqR, img_gt = random_augmentation(img_lqL, img_lqR, img_gt) |
|
|
|
|
|
img_lqL, img_lqR, img_gt = img2tensor([img_lqL, img_lqR, img_gt], |
|
bgr2rgb=True, |
|
float32=True) |
|
|
|
if self.mean is not None or self.std is not None: |
|
normalize(img_lqL, self.mean, self.std, inplace=True) |
|
normalize(img_lqR, self.mean, self.std, inplace=True) |
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
|
|
img_lq = torch.cat([img_lqL, img_lqR], 0) |
|
|
|
return { |
|
'lq': img_lq, |
|
'gt': img_gt, |
|
'lq_path': lqL_path, |
|
'gt_path': gt_path |
|
} |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|