File size: 3,494 Bytes
32f8dbd ed4820e ef1a2eb ed4820e ef1a2eb ed4820e 32f8dbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
language: en
datasets:
- superb
tags:
- speech
- audio
- hubert
- audio-classification
widget:
- example_title: IEMOCAP clip "happy"
src: https://cdn-media.huggingface.co/speech_samples/IEMOCAP_Ses01F_impro03_F013.wav
- example_title: IEMOCAP clip "neutral"
src: https://cdn-media.huggingface.co/speech_samples/IEMOCAP_Ses01F_impro04_F000.wav
license: apache-2.0
---
# Hubert-Large for Emotion Recognition
## Model description
This is a ported version of
[S3PRL's Hubert for the SUPERB Emotion Recognition task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/emotion).
The base model is [hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
[IEMOCAP](https://sail.usc.edu/iemocap/) is adopted, and we follow the conventional evaluation protocol:
we drop the unbalanced emotion classes to leave the final four classes with a similar amount of data points and
cross-validate on five folds of the standard splits.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#er-emotion-recognition).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
classifier = pipeline("audio-classification", model="superb/hubert-large-superb-er")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
dataset = dataset.map(map_to_array)
model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-er")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**session1**| `0.6762` | `N/A` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |