speech-test commited on
Commit
89a7d53
·
1 Parent(s): 54057c4

Update info

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - superb
5
+ tags:
6
+ - speech
7
+ - audio
8
+ - wav2vec2
9
+ - audio-classification
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # Wav2Vec2-Base for Emotion Recognition
14
+
15
+ ## Model description
16
+
17
+ This is a ported version of
18
+ [S3PRL's Wav2Vec2 for the SUPERB Emotion Recognition task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/emotion).
19
+
20
+ The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz
21
+ sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
22
+
23
+ For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
24
+
25
+ ## Task and dataset description
26
+
27
+ Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
28
+ [IEMOCAP](https://sail.usc.edu/iemocap/) is adopted, and we follow the conventional evaluation protocol:
29
+ we drop the unbalanced emotion classes to leave the final four classes with a similar amount of data points and
30
+ cross-validate on five folds of the standard splits.
31
+
32
+ For the original model's training and evaluation instructions refer to the
33
+ [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#er-emotion-recognition).
34
+
35
+
36
+ ## Usage examples
37
+
38
+ You can use the model via the Audio Classification pipeline:
39
+ ```python
40
+ from datasets import load_dataset
41
+ from transformers import pipeline
42
+
43
+ dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
44
+
45
+ classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
46
+ labels = classifier(dataset[0]["file"], top_k=5)
47
+ ```
48
+
49
+ Or use the model directly:
50
+ ```python
51
+ import torch
52
+ import librosa
53
+ from datasets import load_dataset
54
+ from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
55
+
56
+ def map_to_array(example):
57
+ speech, _ = librosa.load(example["file"], sr=16000, mono=True)
58
+ example["speech"] = speech
59
+ return example
60
+
61
+ # load a demo dataset and read audio files
62
+ dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
63
+ dataset = dataset.map(map_to_array)
64
+
65
+ model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er")
66
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
67
+
68
+ # compute attention masks and normalize the waveform if needed
69
+ inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
70
+
71
+ logits = model(**inputs).logits
72
+ predicted_ids = torch.argmax(logits, dim=-1)
73
+ labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
74
+ ```
75
+
76
+ ## Eval results
77
+
78
+ The evaluation metric is accuracy.
79
+
80
+ | | **s3prl** | **transformers** |
81
+ |--------|-----------|------------------|
82
+ |**session1**| `0.6343` | `0.6258` |
83
+
84
+ ### BibTeX entry and citation info
85
+
86
+ ```bibtex
87
+ @article{yang2021superb,
88
+ title={SUPERB: Speech processing Universal PERformance Benchmark},
89
+ author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
90
+ journal={arXiv preprint arXiv:2105.01051},
91
+ year={2021}
92
+ }
93
+ ```