supermy commited on
Commit
8120f45
1 Parent(s): dbf912c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -5
README.md CHANGED
@@ -96,11 +96,48 @@ model = AutoModelForCausalLM.from_pretrained("supermy/poetry")
96
 
97
  ## Training procedure
98
 
99
- 在英伟达16G显卡训练了 4 天整,
100
- num_train_epochs=680。
101
-
102
-
103
- 模型[GPT2](https://huggingface.co/gpt2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
 
106
  ```
 
96
 
97
  ## Training procedure
98
 
99
+ 模型:[GPT2](https://huggingface.co/gpt2)
100
+ 训练环境:英伟达16G显卡
101
+
102
+ bpe分词:"vocab_size"=50000
103
+
104
+ ***** Running training *****
105
+ Num examples = 16431
106
+ Num Epochs = 680
107
+ Instantaneous batch size per device = 24
108
+ Total train batch size (w. parallel, distributed & accumulation) = 192
109
+ Gradient Accumulation steps = 8
110
+ Total optimization steps = 57800
111
+ Number of trainable parameters = 124242432
112
+ GPT-2 size: 124.2M parameters
113
+ 0%| | 0/57800 [00:00<?, ?it/s]You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
114
+ 9%|▊ | 5000/57800 [6:58:57<72:53:18, 4.97s/it]***** Running Evaluation *****
115
+ Num examples = 1755
116
+ Batch size = 24
117
+ {'loss': 3.1345, 'learning_rate': 0.0004939065828881268, 'epoch': 58.82}
118
+ 9%|▊ | 5000/57800 [6:59:14<72:53:18, Saving model checkpoint to poetry-trainer/checkpoint-5000
119
+ Configuration saved in poetry-trainer/checkpoint-5000/config.json
120
+ Model weights saved in poetry-trainer/checkpoint-5000/pytorch_model.bin
121
+ tokenizer config file saved in poetry-trainer/checkpoint-5000/tokenizer_config.json
122
+ Special tokens file saved in poetry-trainer/checkpoint-5000/special_tokens_map.json
123
+ 17%|█▋ | 10000/57800 [13:55:32<65:40:41, 4.95s/it]***** Running Evaluation *****
124
+ Num examples = 1755
125
+ Batch size = 24
126
+ {'eval_loss': 11.14090633392334, 'eval_runtime': 16.8326, 'eval_samples_per_second': 104.262, 'eval_steps_per_second': 4.396, 'epoch': 58.82}
127
+ {'loss': 0.2511, 'learning_rate': 0.00046966687938531824, 'epoch': 117.64}
128
+ 17%|█▋ | 10000/57800 [13:55:48<65:40:41Saving model checkpoint to poetry-trainer/checkpoint-10000
129
+ ..........
130
+ 95%|█████████▌| 55000/57800 [76:06:46<3:59:33, 5.13s/it]***** Running Evaluation *****
131
+ Num examples = 1755
132
+ Batch size = 24
133
+ {'eval_loss': 14.860174179077148, 'eval_runtime': 16.7826, 'eval_samples_per_second': 104.572, 'eval_steps_per_second': 4.409, 'epoch': 588.23}
134
+ {'loss': 0.0083, 'learning_rate': 3.0262183266589473e-06, 'epoch': 647.06}
135
+ 95%|█████████▌| 55000/57800 [76:07:03<3:59:33,Saving model checkpoint to poetry-trainer/checkpoint-55000
136
+
137
+ {'eval_loss': 14.830656051635742, 'eval_runtime': 16.7365, 'eval_samples_per_second': 104.86, 'eval_steps_per_second': 4.421, 'epoch': 647.06}
138
+ {'train_runtime': 287920.5857, 'train_samples_per_second': 38.806, 'train_steps_per_second': 0.201, 'train_loss': 0.33751299874592816, 'epoch': 679.99}
139
+
140
+ 100%|██████████| 57800/57800 [79:58:40<00:00, 4.93s/it]
141
 
142
 
143
  ```