File size: 9,267 Bytes
4e93afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- SpeedOfMagic/ontonotes_english
metrics:
- precision
- recall
- f1
widget:
- text: Late Friday night, the Senate voted 87 - 7 to approve an estimated $13.5 billion
measure that had been stripped of hundreds of provisions that would have widened,
rather than narrowed, the federal budget deficit.
- text: Among classes for which details were available, yields ranged from 8.78%,
or 75 basis points over two - year Treasury securities, to 10.05%, or 200 basis
points over 10 - year Treasurys.
- text: According to statistics, in the past five years, Tianjin Bonded Area has attracted
a total of over 3000 enterprises from 73 countries and regions all over the world
and 25 domestic provinces, cities and municipalities to invest, reaching a total
agreed investment value of more than 3 billion US dollars and a total agreed foreign
investment reaching more than 2 billion US dollars.
- text: But Dirk Van Dongen, president of the National Association of Wholesaler -
Distributors, said that last month's rise "isn't as bad an omen" as the 0.9% figure
suggests.
- text: Robert White, Canadian Auto Workers union president, used the impending Scarborough
shutdown to criticize the U.S. - Canada free trade agreement and its champion,
Prime Minister Brian Mulroney.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: SpeedOfMagic/ontonotes_english
split: test
metrics:
- type: f1
value: 0.9077127659574469
name: F1
- type: precision
value: 0.9045852107076597
name: Precision
- type: recall
value: 0.9108620229516947
name: Recall
---
# SpanMarker
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english) dataset that can be used for Named Entity Recognition.
## Model Details
### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------------|:-------------------------------------------------------------------------------------------------------|
| CARDINAL | "tens of thousands", "One point three million", "two" |
| DATE | "Sunday", "a year", "two thousand one" |
| EVENT | "World War Two", "Katrina", "Hurricane Katrina" |
| FAC | "Route 80", "the White House", "Dylan 's Candy Bars" |
| GPE | "America", "Atlanta", "Miami" |
| LANGUAGE | "English", "Russian", "Arabic" |
| LAW | "Roe", "the Patriot Act", "FISA" |
| LOC | "Asia", "the Gulf Coast", "the West Bank" |
| MONEY | "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars" |
| NORP | "American", "Muslim", "Americans" |
| ORDINAL | "third", "First", "first" |
| ORG | "Wal - Mart", "Wal - Mart 's", "a Wal - Mart" |
| PERCENT | "seventeen percent", "sixty - seven percent", "a hundred percent" |
| PERSON | "Kira Phillips", "Rick Sanchez", "Bob Shapiro" |
| PRODUCT | "Columbia", "Discovery Shuttle", "Discovery" |
| QUANTITY | "forty - five miles", "six thousand feet", "a hundred and seventy pounds" |
| TIME | "tonight", "evening", "Tonight" |
| WORK_OF_ART | "A Tale of Two Cities", "Newsnight", "Headline News" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:------------|:----------|:-------|:-------|
| **all** | 0.9046 | 0.9109 | 0.9077 |
| CARDINAL | 0.8579 | 0.8524 | 0.8552 |
| DATE | 0.8634 | 0.8893 | 0.8762 |
| EVENT | 0.6719 | 0.6935 | 0.6825 |
| FAC | 0.7211 | 0.7852 | 0.7518 |
| GPE | 0.9725 | 0.9647 | 0.9686 |
| LANGUAGE | 0.9286 | 0.5909 | 0.7222 |
| LAW | 0.7941 | 0.7297 | 0.7606 |
| LOC | 0.7632 | 0.8101 | 0.7859 |
| MONEY | 0.8914 | 0.8885 | 0.8900 |
| NORP | 0.9311 | 0.9643 | 0.9474 |
| ORDINAL | 0.8227 | 0.9282 | 0.8723 |
| ORG | 0.9217 | 0.9073 | 0.9145 |
| PERCENT | 0.9145 | 0.9198 | 0.9171 |
| PERSON | 0.9638 | 0.9643 | 0.9640 |
| PRODUCT | 0.6778 | 0.8026 | 0.7349 |
| QUANTITY | 0.7850 | 0.8 | 0.7925 |
| TIME | 0.6794 | 0.6730 | 0.6762 |
| WORK_OF_ART | 0.6562 | 0.6442 | 0.6502 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
# Run inference
entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 18.1647 | 210 |
| Entities per sentence | 0 | 1.3655 | 32 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework Versions
- Python: 3.10.13
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |