File size: 2,479 Bytes
9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a 9158b5e 326b63a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-nomimo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-a-nomimo
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0351
- Wer: 22.9167
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.9699 | 0.9662 | 100 | 0.1287 | 46.6821 |
| 0.1644 | 1.9275 | 200 | 0.1624 | 445.0617 |
| 0.236 | 2.8889 | 300 | 0.0895 | 23.1481 |
| 0.0518 | 3.8502 | 400 | 0.0479 | 18.4414 |
| 0.0321 | 4.8116 | 500 | 0.0426 | 14.8148 |
| 0.03 | 5.7729 | 600 | 0.0482 | 19.4444 |
| 0.0218 | 6.7343 | 700 | 0.0325 | 11.6512 |
| 0.0143 | 7.6957 | 800 | 0.0439 | 15.2778 |
| 0.0147 | 8.6570 | 900 | 0.0339 | 11.9599 |
| 0.0104 | 9.6184 | 1000 | 0.0391 | 14.5833 |
| 0.0079 | 10.5797 | 1100 | 0.0338 | 33.9506 |
| 0.0054 | 11.5411 | 1200 | 0.0293 | 20.4475 |
| 0.0032 | 12.5024 | 1300 | 0.0357 | 14.3519 |
| 0.002 | 13.4638 | 1400 | 0.0327 | 18.0556 |
| 0.0023 | 14.4251 | 1500 | 0.0351 | 22.9167 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|