File size: 2,547 Bytes
2790504
 
799fe7b
 
 
 
 
 
 
 
 
2790504
 
799fe7b
 
2790504
799fe7b
2790504
799fe7b
 
 
 
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
2790504
799fe7b
 
 
 
 
 
 
 
 
 
 
 
2790504
799fe7b
2790504
799fe7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790504
 
799fe7b
2790504
799fe7b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-nomimose
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-a-nomimose

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0723
- Wer: 15.2655

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer      |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.3968        | 0.9217  | 100  | 0.7677          | 512.9794 |
| 0.3388        | 1.8387  | 200  | 0.3331          | 93.3628  |
| 0.2711        | 2.7558  | 300  | 0.2512          | 87.0944  |
| 0.2383        | 3.6728  | 400  | 0.2198          | 87.9056  |
| 0.2096        | 4.5899  | 500  | 0.1971          | 80.3835  |
| 0.2131        | 5.5069  | 600  | 0.1680          | 75.5900  |
| 0.1498        | 6.4240  | 700  | 0.1433          | 56.1209  |
| 0.1152        | 7.3410  | 800  | 0.1094          | 41.0767  |
| 0.0833        | 8.2581  | 900  | 0.1193          | 65.9292  |
| 0.0653        | 9.1751  | 1000 | 0.0728          | 25.1475  |
| 0.0444        | 10.0922 | 1100 | 0.0781          | 24.4100  |
| 0.0383        | 11.0092 | 1200 | 0.0537          | 17.6991  |
| 0.0269        | 11.9309 | 1300 | 0.0658          | 18.0678  |
| 0.0182        | 12.8479 | 1400 | 0.0641          | 19.3215  |
| 0.0128        | 13.7650 | 1500 | 0.0679          | 15.8555  |
| 0.0068        | 14.6820 | 1600 | 0.0723          | 15.2655  |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0