File size: 3,003 Bytes
2c9e712 41c34bb 2c9e712 41c34bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-nm-nomimose-ag
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-nm-nomimose-ag
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2483
- Wer: 21.2742
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 1.7009 | 100 | 0.4217 | 32.9920 |
| 0.9886 | 3.3932 | 200 | 0.3015 | 275.9954 |
| 0.9886 | 5.0855 | 300 | 0.2714 | 67.1217 |
| 0.2263 | 6.7863 | 400 | 0.2278 | 34.1297 |
| 0.2263 | 8.4786 | 500 | 0.2648 | 314.3345 |
| 0.1309 | 10.1709 | 600 | 0.2952 | 132.0819 |
| 0.1309 | 11.8718 | 700 | 0.2093 | 131.0580 |
| 0.0924 | 13.5641 | 800 | 0.3086 | 161.3197 |
| 0.0924 | 15.2564 | 900 | 0.2621 | 30.9443 |
| 0.0739 | 16.9573 | 1000 | 0.2176 | 30.0341 |
| 0.0739 | 18.6496 | 1100 | 0.2371 | 33.9022 |
| 0.0433 | 20.3419 | 1200 | 0.2281 | 33.9022 |
| 0.0433 | 22.0342 | 1300 | 0.2411 | 33.1058 |
| 0.0249 | 23.7350 | 1400 | 0.2423 | 28.6689 |
| 0.0249 | 25.4274 | 1500 | 0.2758 | 32.5370 |
| 0.0135 | 27.1197 | 1600 | 0.2588 | 27.8726 |
| 0.0135 | 28.8205 | 1700 | 0.2683 | 28.4414 |
| 0.0058 | 30.5128 | 1800 | 0.2603 | 23.4357 |
| 0.0058 | 32.2051 | 1900 | 0.2485 | 20.9329 |
| 0.0003 | 33.9060 | 2000 | 0.2483 | 21.2742 |
| 0.0003 | 35.5983 | 2100 | 0.2482 | 21.2742 |
| 0.0 | 37.2906 | 2200 | 0.2483 | 21.2742 |
| 0.0 | 38.9915 | 2300 | 0.2483 | 21.2742 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|