--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: xlsr-a-no-ag results: [] --- # xlsr-a-no-ag This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3484 - Wer: 0.3208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.3717 | 2.8633 | 200 | 2.5118 | 1.0 | | 1.1028 | 5.7194 | 400 | 0.3058 | 0.5279 | | 0.1672 | 8.5755 | 600 | 0.2953 | 0.4243 | | 0.0896 | 11.4317 | 800 | 0.2936 | 0.3663 | | 0.0506 | 14.2878 | 1000 | 0.3016 | 0.3299 | | 0.0354 | 17.1439 | 1200 | 0.3198 | 0.3481 | | 0.0294 | 20.0 | 1400 | 0.2850 | 0.3242 | | 0.0208 | 22.8633 | 1600 | 0.2837 | 0.3265 | | 0.0151 | 25.7194 | 1800 | 0.2923 | 0.3231 | | 0.0134 | 28.5755 | 2000 | 0.3153 | 0.3208 | | 0.0151 | 31.4317 | 2200 | 0.3107 | 0.3231 | | 0.0067 | 34.2878 | 2400 | 0.3222 | 0.3208 | | 0.0066 | 37.1439 | 2600 | 0.3356 | 0.3208 | | 0.0069 | 40.0 | 2800 | 0.3233 | 0.3231 | | 0.0056 | 42.8633 | 3000 | 0.3418 | 0.3208 | | 0.0051 | 45.7194 | 3200 | 0.3428 | 0.3197 | | 0.0035 | 48.5755 | 3400 | 0.3484 | 0.3208 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0