sveyek's picture
End of training
65a162b verified
metadata
library_name: transformers
license: apache-2.0
base_model: sveyek/distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.81

distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-finetuned-gtzan

This model is a fine-tuned version of sveyek/distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2073
  • Accuracy: 0.81

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0759 0.9956 112 0.9223 0.84
0.0011 2.0 225 1.1652 0.82
0.0004 2.9867 336 1.2073 0.81

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3