File size: 23,908 Bytes
ce8359f 202ca65 f2fe75e 202ca65 f2fe75e 5f5a660 74bf5b5 2110c13 19a0317 2110c13 7ad6601 2110c13 19a0317 2110c13 7ad6601 202ca65 002ba26 dc8ae64 002ba26 202ca65 c338390 ce8359f 9b51da9 f7d9153 ce8359f 586fbd1 9b51da9 586fbd1 cc1785d 9b51da9 586fbd1 9b51da9 586fbd1 9b51da9 586fbd1 9b51da9 586fbd1 bb8d536 25d14a2 dc8ae64 2110c13 7ad6601 2110c13 7ad6601 2110c13 dc8ae64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
# svjack/GenshinImpact_XL_Base
This model is derived from [CivitAI](https://civitai.com/models/386505).
## Acknowledgments
Special thanks to [mobeimunan](https://civitai.com/user/mobeimunan) for their contributions to the development of this model.
<!--
from moviepy.editor import ImageClip, VideoFileClip, concatenate_videoclips, clips_array
# 定义图像和视频的路径
image1_path = "https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/3IkZz7uXW9kc-lTnKdQN8.png"
image2_path = "https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ckrKqytF5MhanjIc_Vn1q.png"
image3_path = "https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/vfffGerUQV9W1MHxc_rN_.png"
video_path = "https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/gBaodBk8z3aI69LiT36w2.mp4"
duration = 10
# 加载图像和视频
image1 = ImageClip(image1_path).set_duration(duration).resize(height = 512, width = 512) # 设置图像的持续时间为10秒
image2 = ImageClip(image2_path).set_duration(duration).resize(height = 512, width = 1024)
image3 = ImageClip(image3_path).set_duration(duration).resize(height = 512, width = 1024)
video = VideoFileClip(video_path).resize(height = 512, width = 512)
# 调整视频的持续时间以匹配图像
video = video.subclip(0, duration) # 截取视频的前10秒
# 将图像和视频拼接成一个2x2的网格
final_clip = clips_array([[image1, image2], [video, image3]])
# 调整最终视频的宽高比
final_clip = final_clip.resize(width=1080) # 调整宽度为1080,高度会自动调整
# 导出最终视频
final_clip.write_videofile("zhongli_merge_im_output.mp4", codec="libx264")
VideoFileClip("zhongli_merge_im_output.mp4").set_duration(2.2).write_videofile("zhongli_merge_output_2_2.mp4", codec="libx264")
-->
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/bsgBrDOOXYN-oBH95q5uK.mp4" style="width: 1024px; height: 768x;"></video>
</div>
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/WypE04ag7_4Z1FKhzk475.png" width="1024" height="1024">
</div>
<div style="margin-bottom: 10px;">
<h3>Zhongli Drinking Tea:</h3>
</div>
<div style="margin-bottom: 10px;">
<img src="https://github.com/user-attachments/assets/00451728-f2d5-4009-afa8-23baaabdc223" style="width: 1024px; height: 256px;">
</div>
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://github.com/user-attachments/assets/607e7eb7-d41c-4740-9c8a-8369c31487da" style="width: 1024px; height: 800px;"></video>
</div>
<div style="margin-bottom: 10px;">
<h3>Kamisato Ayato Smiling:</h3>
</div>
<div style="margin-bottom: 10px;">
<img src="https://github.com/user-attachments/assets/7a920f4c-8a3a-4387-98d6-381a798566ef" style="width: 1024px; height: 256px;">
</div>
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://github.com/user-attachments/assets/aaa9849e-0c53-4012-b6c3-9ceb9910f2f8" style="width: 1024px; height: 800px;"></video>
</div>
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/Kmh4NJ1AkfV5X3-kkilAK.mp4" style="width: 1024px; height: 1024px;"></video>
</div>
</div>
## Supported Characters
The model currently supports the following 73 characters from Genshin Impact:
```python
name_dict = {
'旅行者女': 'lumine',
'旅行者男': 'aether',
'派蒙': 'PAIMON',
'迪奥娜': 'DIONA',
'菲米尼': 'FREMINET',
'甘雨': 'GANYU',
'凯亚': 'KAEYA',
'莱依拉': 'LAYLA',
'罗莎莉亚': 'ROSARIA',
'七七': 'QIQI',
'申鹤': 'SHENHE',
'神里绫华': 'KAMISATO AYAKA',
'优菈': 'EULA',
'重云': 'CHONGYUN',
'夏洛蒂': 'charlotte',
'莱欧斯利': 'WRIOTHESLEY',
'艾尔海森': 'ALHAITHAM',
'柯莱': 'COLLEI',
'纳西妲': 'NAHIDA',
'绮良良': 'KIRARA',
'提纳里': 'TIGHNARI',
'瑶瑶': 'YAOYAO',
'珐露珊': 'FARUZAN',
'枫原万叶': 'KAEDEHARA KAZUHA',
'琳妮特': 'LYNETTE',
'流浪者 散兵': 'scaramouche',
'鹿野院平藏': 'SHIKANOIN HEIZOU',
'琴': 'JEAN',
'砂糖': 'SUCROSE',
'温迪': 'VENTI',
'魈': 'XIAO',
'早柚': 'SAYU',
'安柏': 'AMBER',
'班尼特': 'BENNETT',
'迪卢克': 'DILUC',
'迪西娅': 'DEHYA',
'胡桃': 'HU TAO',
'可莉': 'KLEE',
'林尼': 'LYNEY',
'托马': 'THOMA',
'香菱': 'XIANG LING',
'宵宫': 'YOIMIYA',
'辛焱': 'XINYAN',
'烟绯': 'YANFEI',
'八重神子': 'YAE MIKO',
'北斗': 'BEIDOU',
'菲谢尔': 'FISCHL',
'九条裟罗': 'KUJO SARA',
'久岐忍': 'KUKI SHINOBU',
'刻晴': 'KEQING',
'雷电将军': 'RAIDEN SHOGUN',
'雷泽': 'RAZOR',
'丽莎': 'LISA',
'赛诺': 'CYNO',
'芙宁娜': 'FURINA',
'芭芭拉': 'BARBARA',
'公子 达达利亚': 'TARTAGLIA',
'坎蒂丝': 'CANDACE',
'莫娜': 'MONA',
'妮露': 'NILOU',
'珊瑚宫心海': 'SANGONOMIYA KOKOMI',
'神里绫人': 'KAMISATO AYATO',
'行秋': 'XINGQIU',
'夜兰': 'YELAN',
'那维莱特': 'NEUVILLETTE',
'娜维娅': 'NAVIA',
'阿贝多': 'ALBEDO',
'荒泷一斗': 'ARATAKI ITTO',
'凝光': 'NING GUANG',
'诺艾尔': 'NOELLE',
'五郎': 'GOROU',
'云堇': 'YUN JIN',
'钟离': 'ZHONGLI'
}
```
## Installation
To use this model, you need to install the following dependencies:
```bash
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
pip install -U diffusers transformers sentencepiece peft controlnet-aux moviepy
```
## Example Usage
### Generating an Image of Zhongli
Here's an example of how to generate an image of Zhongli using this model:
```python
from diffusers import StableDiffusionXLPipeline
import torch
pipeline = StableDiffusionXLPipeline.from_pretrained(
"svjack/GenshinImpact_XL_Base",
torch_dtype=torch.float16
).to("cuda")
prompt = "solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres,"
negative_prompt = "nsfw,lowres,(bad),text,error,fewer,extra,missing,worst quality,jpeg artifacts,low quality,watermark,unfinished,displeasing,oldest,early,chromatic aberration,signature,extra digits,artistic error,username,scan,[abstract],"
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
generator=torch.manual_seed(0),
).images[0]
image
image.save("zhongli_1024x1024.png")
```
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/3IkZz7uXW9kc-lTnKdQN8.png" width="768" height="768">
<p style="text-align: center;">钟离</p>
</div>
</div>
### Using Canny ControlNet to Restore 2D Images from 3D Toy Photos
Here's an example of how to use Canny ControlNet to restore 2D images from 3D toy photos:
#### Genshin Impact 3D Toys
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/YNG9vRqZGvUSxb_UUrLE5.jpeg" width="512" height="768">
<p style="text-align: center;">钟离</p>
</div>
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/1JfhfFi9qogHwB4M2S54m.jpeg" width="512" height="768">
<p style="text-align: center;">派蒙</p>
</div>
</div>
```python
from diffusers import AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import load_image
import torch
from PIL import Image
from controlnet_aux import CannyDetector
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"svjack/GenshinImpact_XL_Base",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
#pipeline.enable_model_cpu_offload()
canny = CannyDetector()
canny(Image.open("zhongli-cb.jpg")).save("zhongli-cb-canny.jpg")
canny_image = load_image(
"zhongli-cb-canny.jpg"
)
controlnet_conditioning_scale = 0.5
generator = torch.Generator(device="cpu").manual_seed(1)
images = pipeline(
prompt="solo,ZHONGLI\(genshin impact\),1boy,portrait,highres",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=7.0,
generator=generator,
).images
images[0]
images[0].save("zhongli_trans.png")
canny = CannyDetector()
canny(Image.open("paimon-cb-crop.jpg")).save("paimon-cb-canny.jpg")
canny_image = load_image(
"paimon-cb-canny.jpg"
)
controlnet_conditioning_scale = 0.7
generator = torch.Generator(device="cpu").manual_seed(3)
images = pipeline(
prompt="solo,PAIMON\(genshin impact\),1girl,portrait,highres, bright, shiny, high detail, anime",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=8.0,
generator=generator,
).images
images[0]
images[0].save("paimon_trans.png")
```
### Creating a Grid Image
You can also create a grid image from a list of PIL Image objects:
```python
from PIL import Image
def create_grid_image(image_list, rows, cols, cell_width, cell_height):
"""
Create a grid image from a list of PIL Image objects.
:param image_list: A list of PIL Image objects
:param rows: Number of rows in the grid
:param cols: Number of columns in the grid
:param cell_width: Width of each cell in the grid
:param cell_height: Height of each cell in the grid
:return: The resulting grid image
"""
total_width = cols * cell_width
total_height = rows * cell_height
grid_image = Image.new('RGB', (total_width, total_height))
for i, img in enumerate(image_list):
row = i // cols
col = i % cols
img = img.resize((cell_width, cell_height))
x_offset = col * cell_width
y_offset = row * cell_height
grid_image.paste(img, (x_offset, y_offset))
return grid_image
create_grid_image([Image.open("zhongli-cb.jpg") ,Image.open("zhongli-cb-canny.jpg"), Image.open("zhongli_trans.png")], 1, 3, 512, 768)
create_grid_image([Image.open("paimon-cb-crop.jpg") ,Image.open("paimon-cb-canny.jpg"), Image.open("paimon_trans.png")], 1, 3, 512, 768)
```
This will create a grid image showing the original, Canny edge detection, and transformed images side by side.
<div>
<b><h3 style="text-align: center;">Below image list in : (Genshin Impact Toy/ Canny Image / Gemshin Impact Restore 2D Image)</h3></b>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ckrKqytF5MhanjIc_Vn1q.png" width="1536" height="768">
<p style="text-align: center;">钟离</p>
</div>
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/vfffGerUQV9W1MHxc_rN_.png" width="1536" height="768">
<p style="text-align: center;">派蒙</p>
</div>
</div>
</div>
### Generating an Animation of Zhongli
Here's an example of how to generate an animation of Zhongli using the `AnimateDiffSDXLPipeline`:
```python
import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained(
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16
)
model_id = "svjack/GenshinImpact_XL_Base"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe = AnimateDiffSDXLPipeline.from_pretrained(
model_id,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
output = pipe(
prompt="solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres, keep eyes forward.",
negative_prompt="low quality, worst quality",
num_inference_steps=20,
guidance_scale=8,
width=1024,
height=1024,
num_frames=16,
generator=torch.manual_seed(4),
)
frames = output.frames[0]
export_to_gif(frames, "zhongli_animation.gif")
from diffusers.utils import export_to_video
export_to_video(frames, "zhongli_animation.mp4")
from IPython import display
display.Video("zhongli_animation.mp4", width=512, height=512)
```
Use `AutoPipelineForImage2Image` to enhance output:
```python
from moviepy.editor import VideoFileClip
from PIL import Image
clip = VideoFileClip("zhongli_animation.mp4")
frames = list(map(Image.fromarray ,clip.iter_frames()))
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
import torch
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
"svjack/GenshinImpact_XL_Base",
torch_dtype=torch.float16
)
# use from_pipe to avoid consuming additional memory when loading a checkpoint
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
from tqdm import tqdm
req = []
for init_image in tqdm(frames):
prompt = "solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres, keep eyes forward."
image = pipeline(prompt, image=init_image, strength=0.8, guidance_scale=10.5).images[0]
req.append(image)
from diffusers.utils import export_to_video
export_to_video(req, "zhongli_animation_im2im.mp4")
from IPython import display
display.Video("zhongli_animation_im2im.mp4", width=512, height=512)
```
##### Enhancing Animation with RIFE
To enhance the animation using RIFE (Real-Time Intermediate Flow Estimation):
```bash
git clone https://github.com/svjack/Practical-RIFE && cd Practical-RIFE && pip install -r requirements.txt
python inference_video.py --multi=128 --video=../zhongli_animation_im2im.mp4
```
```python
from moviepy.editor import VideoFileClip
clip = VideoFileClip("zhongli_animation_im2im_128X_1280fps.mp4")
def speed_change_video(video_clip, speed_factor, output_path):
if speed_factor == 1:
# 如果变速因子为1,直接复制原视频
video_clip.write_videofile(output_path, codec="libx264")
else:
# 否则,按变速因子调整视频速度
new_duration = video_clip.duration / speed_factor
sped_up_clip = video_clip.speedx(speed_factor)
sped_up_clip.write_videofile(output_path, codec="libx264")
speed_change_video(clip, 0.05, "zhongli_animation_im2im_128X_1280fps_wrt.mp4")
VideoFileClip("zhongli_animation_im2im_128X_1280fps_wrt.mp4").set_duration(10).write_videofile("zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4", codec="libx264")
from IPython import display
display.Video("zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4", width=512, height=512)
```
##### Merging Videos Horizontally
You can merge two videos horizontally using the following function:
```python
from moviepy.editor import VideoFileClip, CompositeVideoClip
def merge_videos_horizontally(video_path1, video_path2, output_video_path):
clip1 = VideoFileClip(video_path1)
clip2 = VideoFileClip(video_path2)
max_duration = max(clip1.duration, clip2.duration)
if clip1.duration < max_duration:
clip1 = clip1.loop(duration=max_duration)
if clip2.duration < max_duration:
clip2 = clip2.loop(duration=max_duration)
total_width = clip1.w + clip2.w
total_height = max(clip1.h, clip2.h)
final_clip = CompositeVideoClip([
clip1.set_position(("left", "center")),
clip2.set_position(("right", "center"))
], size=(total_width, total_height))
final_clip.write_videofile(output_video_path, codec='libx264')
print(f"Merged video saved to {output_video_path}")
# Example usage
video_path1 = "zhongli_animation.mp4" # 第一个视频文件路径
video_path2 = "zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4" # 第二个视频文件路径
output_video_path = "zhongli_inter_video_im2im_compare.mp4" # 输出视频的路径
merge_videos_horizontally(video_path1, video_path2, output_video_path)
```
<div>
<b><h3 style="text-align: center;">Left is zhongli_animation.mp4 (By AnimateDiffSDXLPipeline), Right is zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4 (By AutoPipelineForImage2Image + Practical-RIFE)</h3></b>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/gBaodBk8z3aI69LiT36w2.mp4"></video>
<p style="text-align: center;">钟离</p>
</div>
</div>
</div>
# Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs - ICML 2024
This repository contains the implementation of a cutting-edge text-to-image diffusion model that leverages multimodal large language models (LLMs) for advanced image generation. The project focuses on recaptioning, planning, and generating high-quality images from textual descriptions, showcasing the capabilities of modern AI in creative content production.
## Installation
To get started with the project, follow these steps to set up the environment and install the necessary dependencies:
1. **Clone the Repository:**
```bash
git clone https://github.com/svjack/RPG-DiffusionMaster
cd RPG-DiffusionMaster
```
2. **Create and Activate Conda Environment:**
```bash
conda create -n RPG python==3.9
conda activate RPG
```
3. **Install Jupyter Kernel:**
```bash
pip install ipykernel
python -m ipykernel install --user --name RPG --display-name "RPG"
```
4. **Install Required Packages:**
```bash
pip install -r requirements.txt
```
5. **Clone Diffusers Repository:**
```bash
git clone https://github.com/huggingface/diffusers
```
## Demo
This section provides a quick demonstration of how to use the `RegionalDiffusionXLPipeline` to generate images based on textual prompts. The example below demonstrates the process of generating an image using a multimodal LLM to split and refine the prompt.
### Import Required Modules
```python
from RegionalDiffusion_base import RegionalDiffusionPipeline
from RegionalDiffusion_xl import RegionalDiffusionXLPipeline
from diffusers.schedulers import KarrasDiffusionSchedulers, DPMSolverMultistepScheduler
from mllm import local_llm, GPT4, DeepSeek
import torch
```
### Load the Model and Configure Scheduler
```python
pipe = RegionalDiffusionXLPipeline.from_single_file(
"https://huggingface.co/svjack/GenshinImpact_XL_Base/blob/main/sdxlBase_v10.safetensors",
torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
)
pipe.to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.enable_xformers_memory_efficient_attention()
```
### User Input and MLLM Processing
```python
# User input prompt
prompt = 'ZHONGLI(genshin impact) with NING GUANG(genshin impact) in red cheongsam in the bar.'
# Process the prompt using DeepSeek MLLM
para_dict = DeepSeek(prompt)
# Extract parameters for image generation
split_ratio = para_dict['Final split ratio']
regional_prompt = para_dict['Regional Prompt']
negative_prompt = "" # Optional negative prompt
```
### Generate and Save the Image
```python
images = pipe(
prompt=regional_prompt,
split_ratio=split_ratio, # The ratio of the regional prompt
batch_size=1, # Batch size
base_ratio=0.5, # The ratio of the base prompt
base_prompt=prompt,
num_inference_steps=20, # Sampling steps
height=1024,
negative_prompt=negative_prompt, # Negative prompt
width=1024,
seed=0, # Random seed
guidance_scale=7.0
).images[0]
# Save the generated image
images.save("test_zhong_ning.png")
```
This demo showcases the power of combining text-to-image diffusion with multimodal LLMs to generate high-quality images from complex textual descriptions. The generated image is saved as `test_zhong_ning.png`.
---
Feel free to explore the repository and experiment with different prompts and configurations to see the full potential of this advanced text-to-image generation model.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ZJZkSaMOGRI7QM0uegeqS.png)
## MotionCtrl and MasaCtrl: Genshin Impact Character Synthesis
Check https://github.com/svjack/MasaCtrl to view example about Genshin Impact Character Synthesis video by MasaCtrl
- **Zhongli Drinking Tea:**
```
"solo,ZHONGLI(genshin impact),1boy,highres," -> "solo,ZHONGLI drink tea use chinese cup (genshin impact),1boy,highres,"
```
![Screenshot 2024-11-17 132742](https://github.com/user-attachments/assets/00451728-f2d5-4009-afa8-23baaabdc223)
- **Kamisato Ayato Smiling:**
```
"solo,KAMISATO AYATO(genshin impact),1boy,highres," -> "solo,KAMISATO AYATO smiling (genshin impact),1boy,highres,"
```
![Screenshot 2024-11-17 133421](https://github.com/user-attachments/assets/7a920f4c-8a3a-4387-98d6-381a798566ef)
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<h3>Zhongli Drinking Tea:</h3>
</div>
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://github.com/user-attachments/assets/607e7eb7-d41c-4740-9c8a-8369c31487da" style="width: 1024px; height: 800px;"></video>
</div>
<div style="margin-bottom: 10px;">
<h3>Kamisato Ayato Smiling:</h3>
</div>
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://github.com/user-attachments/assets/aaa9849e-0c53-4012-b6c3-9ceb9910f2f8" style="width: 1024px; height: 800px;"></video>
</div>
</div>
## Perturbed-Attention-Guidance with Genshin Impact XL
Here's an example of how to enhance Genshin Impact XL by [https://github.com/svjack/Perturbed-Attention-Guidance](https://github.com/svjack/Perturbed-Attention-Guidance):
### Clone the Repository
Next, clone the repository from Hugging Face:
```bash
git clone https://huggingface.co/spaces/svjack/perturbed-attention-guidance-genshin_impact_xl
```
### Navigate to the Repository Directory
Change into the cloned repository directory:
```bash
cd perturbed-attention-guidance-genshin_impact_xl
```
### Install Python Requirements
Install the required Python packages using `pip`:
```bash
pip install -r requirements.txt
```
### Run the Application
Finally, run the application:
```bash
python app.py
```
<div>
<b><h3 style="text-align: center;">Left Use BreadcrumbsPerturbed-Attention-Guidance
, Right Original Genshin Impact XL</h3></b>
<b><h4 style="text-align: center;">Left Seems more pretty </h4></b>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/Kmh4NJ1AkfV5X3-kkilAK.mp4"></video>
</div>
</div>
</div>
|