# svjack/GenshinImpact_XL_Base
This model is derived from [CivitAI](https://civitai.com/models/386505).
## Acknowledgments
Special thanks to [mobeimunan](https://civitai.com/user/mobeimunan) for their contributions to the development of this model.
Zhongli Drinking Tea:
Kamisato Ayato Smiling:
## Supported Characters
The model currently supports the following 73 characters from Genshin Impact:
```python
name_dict = {
'旅行者女': 'lumine',
'旅行者男': 'aether',
'派蒙': 'PAIMON',
'迪奥娜': 'DIONA',
'菲米尼': 'FREMINET',
'甘雨': 'GANYU',
'凯亚': 'KAEYA',
'莱依拉': 'LAYLA',
'罗莎莉亚': 'ROSARIA',
'七七': 'QIQI',
'申鹤': 'SHENHE',
'神里绫华': 'KAMISATO AYAKA',
'优菈': 'EULA',
'重云': 'CHONGYUN',
'夏洛蒂': 'charlotte',
'莱欧斯利': 'WRIOTHESLEY',
'艾尔海森': 'ALHAITHAM',
'柯莱': 'COLLEI',
'纳西妲': 'NAHIDA',
'绮良良': 'KIRARA',
'提纳里': 'TIGHNARI',
'瑶瑶': 'YAOYAO',
'珐露珊': 'FARUZAN',
'枫原万叶': 'KAEDEHARA KAZUHA',
'琳妮特': 'LYNETTE',
'流浪者 散兵': 'scaramouche',
'鹿野院平藏': 'SHIKANOIN HEIZOU',
'琴': 'JEAN',
'砂糖': 'SUCROSE',
'温迪': 'VENTI',
'魈': 'XIAO',
'早柚': 'SAYU',
'安柏': 'AMBER',
'班尼特': 'BENNETT',
'迪卢克': 'DILUC',
'迪西娅': 'DEHYA',
'胡桃': 'HU TAO',
'可莉': 'KLEE',
'林尼': 'LYNEY',
'托马': 'THOMA',
'香菱': 'XIANG LING',
'宵宫': 'YOIMIYA',
'辛焱': 'XINYAN',
'烟绯': 'YANFEI',
'八重神子': 'YAE MIKO',
'北斗': 'BEIDOU',
'菲谢尔': 'FISCHL',
'九条裟罗': 'KUJO SARA',
'久岐忍': 'KUKI SHINOBU',
'刻晴': 'KEQING',
'雷电将军': 'RAIDEN SHOGUN',
'雷泽': 'RAZOR',
'丽莎': 'LISA',
'赛诺': 'CYNO',
'芙宁娜': 'FURINA',
'芭芭拉': 'BARBARA',
'公子 达达利亚': 'TARTAGLIA',
'坎蒂丝': 'CANDACE',
'莫娜': 'MONA',
'妮露': 'NILOU',
'珊瑚宫心海': 'SANGONOMIYA KOKOMI',
'神里绫人': 'KAMISATO AYATO',
'行秋': 'XINGQIU',
'夜兰': 'YELAN',
'那维莱特': 'NEUVILLETTE',
'娜维娅': 'NAVIA',
'阿贝多': 'ALBEDO',
'荒泷一斗': 'ARATAKI ITTO',
'凝光': 'NING GUANG',
'诺艾尔': 'NOELLE',
'五郎': 'GOROU',
'云堇': 'YUN JIN',
'钟离': 'ZHONGLI'
}
```
## Installation
To use this model, you need to install the following dependencies:
```bash
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
pip install -U diffusers transformers sentencepiece peft controlnet-aux moviepy
```
## Example Usage
### Generating an Image of Zhongli
Here's an example of how to generate an image of Zhongli using this model:
```python
from diffusers import StableDiffusionXLPipeline
import torch
pipeline = StableDiffusionXLPipeline.from_pretrained(
"svjack/GenshinImpact_XL_Base",
torch_dtype=torch.float16
).to("cuda")
prompt = "solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres,"
negative_prompt = "nsfw,lowres,(bad),text,error,fewer,extra,missing,worst quality,jpeg artifacts,low quality,watermark,unfinished,displeasing,oldest,early,chromatic aberration,signature,extra digits,artistic error,username,scan,[abstract],"
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
generator=torch.manual_seed(0),
).images[0]
image
image.save("zhongli_1024x1024.png")
```
钟离
### Using Canny ControlNet to Restore 2D Images from 3D Toy Photos
Here's an example of how to use Canny ControlNet to restore 2D images from 3D toy photos:
#### Genshin Impact 3D Toys
钟离
派蒙
```python
from diffusers import AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import load_image
import torch
from PIL import Image
from controlnet_aux import CannyDetector
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"svjack/GenshinImpact_XL_Base",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
#pipeline.enable_model_cpu_offload()
canny = CannyDetector()
canny(Image.open("zhongli-cb.jpg")).save("zhongli-cb-canny.jpg")
canny_image = load_image(
"zhongli-cb-canny.jpg"
)
controlnet_conditioning_scale = 0.5
generator = torch.Generator(device="cpu").manual_seed(1)
images = pipeline(
prompt="solo,ZHONGLI\(genshin impact\),1boy,portrait,highres",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=7.0,
generator=generator,
).images
images[0]
images[0].save("zhongli_trans.png")
canny = CannyDetector()
canny(Image.open("paimon-cb-crop.jpg")).save("paimon-cb-canny.jpg")
canny_image = load_image(
"paimon-cb-canny.jpg"
)
controlnet_conditioning_scale = 0.7
generator = torch.Generator(device="cpu").manual_seed(3)
images = pipeline(
prompt="solo,PAIMON\(genshin impact\),1girl,portrait,highres, bright, shiny, high detail, anime",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=8.0,
generator=generator,
).images
images[0]
images[0].save("paimon_trans.png")
```
### Creating a Grid Image
You can also create a grid image from a list of PIL Image objects:
```python
from PIL import Image
def create_grid_image(image_list, rows, cols, cell_width, cell_height):
"""
Create a grid image from a list of PIL Image objects.
:param image_list: A list of PIL Image objects
:param rows: Number of rows in the grid
:param cols: Number of columns in the grid
:param cell_width: Width of each cell in the grid
:param cell_height: Height of each cell in the grid
:return: The resulting grid image
"""
total_width = cols * cell_width
total_height = rows * cell_height
grid_image = Image.new('RGB', (total_width, total_height))
for i, img in enumerate(image_list):
row = i // cols
col = i % cols
img = img.resize((cell_width, cell_height))
x_offset = col * cell_width
y_offset = row * cell_height
grid_image.paste(img, (x_offset, y_offset))
return grid_image
create_grid_image([Image.open("zhongli-cb.jpg") ,Image.open("zhongli-cb-canny.jpg"), Image.open("zhongli_trans.png")], 1, 3, 512, 768)
create_grid_image([Image.open("paimon-cb-crop.jpg") ,Image.open("paimon-cb-canny.jpg"), Image.open("paimon_trans.png")], 1, 3, 512, 768)
```
This will create a grid image showing the original, Canny edge detection, and transformed images side by side.
Below image list in : (Genshin Impact Toy/ Canny Image / Gemshin Impact Restore 2D Image)
钟离
派蒙
### Generating an Animation of Zhongli
Here's an example of how to generate an animation of Zhongli using the `AnimateDiffSDXLPipeline`:
```python
import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained(
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16
)
model_id = "svjack/GenshinImpact_XL_Base"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe = AnimateDiffSDXLPipeline.from_pretrained(
model_id,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
output = pipe(
prompt="solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres, keep eyes forward.",
negative_prompt="low quality, worst quality",
num_inference_steps=20,
guidance_scale=8,
width=1024,
height=1024,
num_frames=16,
generator=torch.manual_seed(4),
)
frames = output.frames[0]
export_to_gif(frames, "zhongli_animation.gif")
from diffusers.utils import export_to_video
export_to_video(frames, "zhongli_animation.mp4")
from IPython import display
display.Video("zhongli_animation.mp4", width=512, height=512)
```
Use `AutoPipelineForImage2Image` to enhance output:
```python
from moviepy.editor import VideoFileClip
from PIL import Image
clip = VideoFileClip("zhongli_animation.mp4")
frames = list(map(Image.fromarray ,clip.iter_frames()))
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
import torch
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
"svjack/GenshinImpact_XL_Base",
torch_dtype=torch.float16
)
# use from_pipe to avoid consuming additional memory when loading a checkpoint
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
from tqdm import tqdm
req = []
for init_image in tqdm(frames):
prompt = "solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres, keep eyes forward."
image = pipeline(prompt, image=init_image, strength=0.8, guidance_scale=10.5).images[0]
req.append(image)
from diffusers.utils import export_to_video
export_to_video(req, "zhongli_animation_im2im.mp4")
from IPython import display
display.Video("zhongli_animation_im2im.mp4", width=512, height=512)
```
##### Enhancing Animation with RIFE
To enhance the animation using RIFE (Real-Time Intermediate Flow Estimation):
```bash
git clone https://github.com/svjack/Practical-RIFE && cd Practical-RIFE && pip install -r requirements.txt
python inference_video.py --multi=128 --video=../zhongli_animation_im2im.mp4
```
```python
from moviepy.editor import VideoFileClip
clip = VideoFileClip("zhongli_animation_im2im_128X_1280fps.mp4")
def speed_change_video(video_clip, speed_factor, output_path):
if speed_factor == 1:
# 如果变速因子为1,直接复制原视频
video_clip.write_videofile(output_path, codec="libx264")
else:
# 否则,按变速因子调整视频速度
new_duration = video_clip.duration / speed_factor
sped_up_clip = video_clip.speedx(speed_factor)
sped_up_clip.write_videofile(output_path, codec="libx264")
speed_change_video(clip, 0.05, "zhongli_animation_im2im_128X_1280fps_wrt.mp4")
VideoFileClip("zhongli_animation_im2im_128X_1280fps_wrt.mp4").set_duration(10).write_videofile("zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4", codec="libx264")
from IPython import display
display.Video("zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4", width=512, height=512)
```
##### Merging Videos Horizontally
You can merge two videos horizontally using the following function:
```python
from moviepy.editor import VideoFileClip, CompositeVideoClip
def merge_videos_horizontally(video_path1, video_path2, output_video_path):
clip1 = VideoFileClip(video_path1)
clip2 = VideoFileClip(video_path2)
max_duration = max(clip1.duration, clip2.duration)
if clip1.duration < max_duration:
clip1 = clip1.loop(duration=max_duration)
if clip2.duration < max_duration:
clip2 = clip2.loop(duration=max_duration)
total_width = clip1.w + clip2.w
total_height = max(clip1.h, clip2.h)
final_clip = CompositeVideoClip([
clip1.set_position(("left", "center")),
clip2.set_position(("right", "center"))
], size=(total_width, total_height))
final_clip.write_videofile(output_video_path, codec='libx264')
print(f"Merged video saved to {output_video_path}")
# Example usage
video_path1 = "zhongli_animation.mp4" # 第一个视频文件路径
video_path2 = "zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4" # 第二个视频文件路径
output_video_path = "zhongli_inter_video_im2im_compare.mp4" # 输出视频的路径
merge_videos_horizontally(video_path1, video_path2, output_video_path)
```
Left is zhongli_animation.mp4 (By AnimateDiffSDXLPipeline), Right is zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4 (By AutoPipelineForImage2Image + Practical-RIFE)
# Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs - ICML 2024
This repository contains the implementation of a cutting-edge text-to-image diffusion model that leverages multimodal large language models (LLMs) for advanced image generation. The project focuses on recaptioning, planning, and generating high-quality images from textual descriptions, showcasing the capabilities of modern AI in creative content production.
## Installation
To get started with the project, follow these steps to set up the environment and install the necessary dependencies:
1. **Clone the Repository:**
```bash
git clone https://github.com/svjack/RPG-DiffusionMaster
cd RPG-DiffusionMaster
```
2. **Create and Activate Conda Environment:**
```bash
conda create -n RPG python==3.9
conda activate RPG
```
3. **Install Jupyter Kernel:**
```bash
pip install ipykernel
python -m ipykernel install --user --name RPG --display-name "RPG"
```
4. **Install Required Packages:**
```bash
pip install -r requirements.txt
```
5. **Clone Diffusers Repository:**
```bash
git clone https://github.com/huggingface/diffusers
```
## Demo
This section provides a quick demonstration of how to use the `RegionalDiffusionXLPipeline` to generate images based on textual prompts. The example below demonstrates the process of generating an image using a multimodal LLM to split and refine the prompt.
### Import Required Modules
```python
from RegionalDiffusion_base import RegionalDiffusionPipeline
from RegionalDiffusion_xl import RegionalDiffusionXLPipeline
from diffusers.schedulers import KarrasDiffusionSchedulers, DPMSolverMultistepScheduler
from mllm import local_llm, GPT4, DeepSeek
import torch
```
### Load the Model and Configure Scheduler
```python
pipe = RegionalDiffusionXLPipeline.from_single_file(
"https://huggingface.co/svjack/GenshinImpact_XL_Base/blob/main/sdxlBase_v10.safetensors",
torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
)
pipe.to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.enable_xformers_memory_efficient_attention()
```
### User Input and MLLM Processing
```python
# User input prompt
prompt = 'ZHONGLI(genshin impact) with NING GUANG(genshin impact) in red cheongsam in the bar.'
# Process the prompt using DeepSeek MLLM
para_dict = DeepSeek(prompt)
# Extract parameters for image generation
split_ratio = para_dict['Final split ratio']
regional_prompt = para_dict['Regional Prompt']
negative_prompt = "" # Optional negative prompt
```
### Generate and Save the Image
```python
images = pipe(
prompt=regional_prompt,
split_ratio=split_ratio, # The ratio of the regional prompt
batch_size=1, # Batch size
base_ratio=0.5, # The ratio of the base prompt
base_prompt=prompt,
num_inference_steps=20, # Sampling steps
height=1024,
negative_prompt=negative_prompt, # Negative prompt
width=1024,
seed=0, # Random seed
guidance_scale=7.0
).images[0]
# Save the generated image
images.save("test_zhong_ning.png")
```
This demo showcases the power of combining text-to-image diffusion with multimodal LLMs to generate high-quality images from complex textual descriptions. The generated image is saved as `test_zhong_ning.png`.
---
Feel free to explore the repository and experiment with different prompts and configurations to see the full potential of this advanced text-to-image generation model.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ZJZkSaMOGRI7QM0uegeqS.png)
## MotionCtrl and MasaCtrl: Genshin Impact Character Synthesis
Check https://github.com/svjack/MasaCtrl to view example about Genshin Impact Character Synthesis video by MasaCtrl
- **Zhongli Drinking Tea:**
```
"solo,ZHONGLI(genshin impact),1boy,highres," -> "solo,ZHONGLI drink tea use chinese cup (genshin impact),1boy,highres,"
```
![Screenshot 2024-11-17 132742](https://github.com/user-attachments/assets/00451728-f2d5-4009-afa8-23baaabdc223)
- **Kamisato Ayato Smiling:**
```
"solo,KAMISATO AYATO(genshin impact),1boy,highres," -> "solo,KAMISATO AYATO smiling (genshin impact),1boy,highres,"
```
![Screenshot 2024-11-17 133421](https://github.com/user-attachments/assets/7a920f4c-8a3a-4387-98d6-381a798566ef)
Zhongli Drinking Tea:
Kamisato Ayato Smiling:
## Perturbed-Attention-Guidance with Genshin Impact XL
Here's an example of how to enhance Genshin Impact XL by [https://github.com/svjack/Perturbed-Attention-Guidance](https://github.com/svjack/Perturbed-Attention-Guidance):
### Clone the Repository
Next, clone the repository from Hugging Face:
```bash
git clone https://huggingface.co/spaces/svjack/perturbed-attention-guidance-genshin_impact_xl
```
### Navigate to the Repository Directory
Change into the cloned repository directory:
```bash
cd perturbed-attention-guidance-genshin_impact_xl
```
### Install Python Requirements
Install the required Python packages using `pip`:
```bash
pip install -r requirements.txt
```
### Run the Application
Finally, run the application:
```bash
python app.py
```
Left Use BreadcrumbsPerturbed-Attention-Guidance
, Right Original Genshin Impact XL
Left Seems more pretty