|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
TextToVideoSDPipeline, |
|
UNet3DConditionModel, |
|
) |
|
from diffusers.utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_numpy, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
skip_mps, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, SDFunctionTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class TextToVideoSDPipelineFastTests(PipelineTesterMixin, SDFunctionTesterMixin, unittest.TestCase): |
|
pipeline_class = TextToVideoSDPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"return_dict", |
|
"callback", |
|
"callback_steps", |
|
] |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet3DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=1, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"), |
|
up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"), |
|
cross_attention_dim=4, |
|
attention_head_dim=4, |
|
norm_num_groups=2, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=(8,), |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=32, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=4, |
|
intermediate_size=16, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=2, |
|
num_hidden_layers=2, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "pt", |
|
} |
|
return inputs |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
expected_slice = None |
|
if torch_device == "cpu": |
|
expected_slice = np.array([0.4903, 0.5649, 0.5504, 0.5179, 0.4821, 0.5466, 0.4131, 0.5052, 0.5077]) |
|
return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) |
|
|
|
def test_text_to_video_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = TextToVideoSDPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["output_type"] = "np" |
|
frames = sd_pipe(**inputs).frames |
|
|
|
image_slice = frames[0][0][-3:, -3:, -1] |
|
|
|
assert frames[0][0].shape == (32, 32, 3) |
|
expected_slice = np.array([0.7537, 0.1752, 0.6157, 0.5508, 0.4240, 0.4110, 0.4838, 0.5648, 0.5094]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="Feature isn't heavily used. Test in CUDA environment only.") |
|
def test_attention_slicing_forward_pass(self): |
|
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False, expected_max_diff=3e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2) |
|
|
|
|
|
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") |
|
def test_inference_batch_consistent(self): |
|
pass |
|
|
|
|
|
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") |
|
def test_inference_batch_single_identical(self): |
|
pass |
|
|
|
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") |
|
def test_num_images_per_prompt(self): |
|
pass |
|
|
|
def test_progress_bar(self): |
|
return super().test_progress_bar() |
|
|
|
|
|
@slow |
|
@skip_mps |
|
@require_torch_gpu |
|
class TextToVideoSDPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_two_step_model(self): |
|
expected_video = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text-to-video/video_2step.npy" |
|
) |
|
|
|
pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") |
|
pipe = pipe.to(torch_device) |
|
|
|
prompt = "Spiderman is surfing" |
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
video_frames = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").frames |
|
assert numpy_cosine_similarity_distance(expected_video.flatten(), video_frames.flatten()) < 1e-4 |
|
|
|
def test_two_step_model_with_freeu(self): |
|
expected_video = [] |
|
|
|
pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") |
|
pipe = pipe.to(torch_device) |
|
|
|
prompt = "Spiderman is surfing" |
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) |
|
video_frames = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").frames |
|
video = video_frames[0, 0, -3:, -3:, -1].flatten() |
|
|
|
expected_video = [0.3643, 0.3455, 0.3831, 0.3923, 0.2978, 0.3247, 0.3278, 0.3201, 0.3475] |
|
|
|
assert np.abs(expected_video - video).mean() < 5e-2 |
|
|