Upload 2 files
Browse files- produce_gif_script.py +221 -0
- xiangling_video_seed.csv +0 -0
produce_gif_script.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
!huggingface-cli download \
|
3 |
+
--repo-type dataset svjack/video-dataset-Lily-Bikini-rm-background-organized \
|
4 |
+
--local-dir video-dataset-Lily-Bikini-rm-background-organized
|
5 |
+
|
6 |
+
import re
|
7 |
+
|
8 |
+
def insert_content_in_string(insert_content, character_name, gender=None):
|
9 |
+
"""
|
10 |
+
在原始字符串中特定位置插入内容。
|
11 |
+
|
12 |
+
:param insert_content: 要插入的内容
|
13 |
+
:param character_name: 角色名称
|
14 |
+
:param gender: 性别(可选,可以是 "1boy" 或 "1girl")
|
15 |
+
:return: 修改后的字符串
|
16 |
+
"""
|
17 |
+
# 根据 character_name 和 gender 生成 original_string
|
18 |
+
original_string = f"solo,{character_name}\(genshin impact\),{gender if gender else '1boy'},highres,"
|
19 |
+
# 根据 character_name 生成 target_pattern
|
20 |
+
target_pattern = re.escape(character_name)
|
21 |
+
# 插入内容
|
22 |
+
modified_string = re.sub(target_pattern, r'\g<0>' + insert_content, original_string)
|
23 |
+
return original_string ,modified_string
|
24 |
+
|
25 |
+
from datasets import load_dataset
|
26 |
+
character_name = "Xiangling"
|
27 |
+
gender = "1girl" # 可选参数
|
28 |
+
prompt_list = load_dataset("svjack/daily-actions-en-zh")["train"].to_pandas()["en"].map(
|
29 |
+
lambda x: ", {}".format(x)
|
30 |
+
).map(
|
31 |
+
lambda insert_content: insert_content_in_string(insert_content, character_name, gender)[-1]
|
32 |
+
).dropna().drop_duplicates().values.tolist()
|
33 |
+
print(len(prompt_list))
|
34 |
+
|
35 |
+
import pandas as pd
|
36 |
+
import pathlib
|
37 |
+
reference_video_list = pd.Series(
|
38 |
+
list(pathlib.Path("video-dataset-Lily-Bikini-rm-background-organized").rglob("*.mp4"))
|
39 |
+
).map(str).values.tolist()
|
40 |
+
print(len(reference_video_list))
|
41 |
+
|
42 |
+
from itertools import product
|
43 |
+
pd.DataFrame(list(product(*[reference_video_list, prompt_list])))[[1, 0]].rename(
|
44 |
+
columns = {
|
45 |
+
1: "prompt",
|
46 |
+
0: "input_video"
|
47 |
+
}
|
48 |
+
).to_csv("xiangling_video_seed.csv", index = False)
|
49 |
+
|
50 |
+
!python produce_gif_script.py xiangling_video_seed.csv "svjack/GenshinImpact_XL_Base" xiangling_gif_dir \
|
51 |
+
--num_frames 16 --temp_folder temp_frames --seed 0 --controlnet_conditioning_scale 0.3
|
52 |
+
'''
|
53 |
+
|
54 |
+
import sys
|
55 |
+
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
|
56 |
+
from animatediff_controlnet_sdxl import *
|
57 |
+
|
58 |
+
import argparse
|
59 |
+
from moviepy.editor import VideoFileClip, ImageSequenceClip
|
60 |
+
import os
|
61 |
+
import torch
|
62 |
+
from diffusers.models import MotionAdapter
|
63 |
+
from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel
|
64 |
+
from diffusers.utils import export_to_gif
|
65 |
+
from PIL import Image
|
66 |
+
from controlnet_aux.processor import Processor
|
67 |
+
import pandas as pd
|
68 |
+
import random
|
69 |
+
from tqdm import tqdm
|
70 |
+
|
71 |
+
# 初始化 MotionAdapter 和 ControlNetModel
|
72 |
+
adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)
|
73 |
+
|
74 |
+
def initialize_pipeline(model_id):
|
75 |
+
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
|
76 |
+
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda")
|
77 |
+
|
78 |
+
# 初始化 AnimateDiffSDXLControlnetPipeline
|
79 |
+
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
|
80 |
+
model_id,
|
81 |
+
controlnet=controlnet,
|
82 |
+
motion_adapter=adapter,
|
83 |
+
scheduler=scheduler,
|
84 |
+
torch_dtype=torch.float16,
|
85 |
+
).to("cuda")
|
86 |
+
pipe.enable_vae_slicing()
|
87 |
+
pipe.enable_vae_tiling()
|
88 |
+
return pipe
|
89 |
+
|
90 |
+
# 全局初始化管道
|
91 |
+
pipe = None
|
92 |
+
|
93 |
+
def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'):
|
94 |
+
"""
|
95 |
+
将视频处理成指定帧数的视频,并保持原始的帧率。
|
96 |
+
|
97 |
+
:param input_video_path: 输入视频文件路径
|
98 |
+
:param num_frames: 目标帧数
|
99 |
+
:param temp_folder: 临时文件夹路径
|
100 |
+
"""
|
101 |
+
clip = VideoFileClip(input_video_path)
|
102 |
+
original_duration = clip.duration
|
103 |
+
segment_duration = original_duration / num_frames
|
104 |
+
|
105 |
+
if not os.path.exists(temp_folder):
|
106 |
+
os.makedirs(temp_folder)
|
107 |
+
|
108 |
+
for i in range(num_frames):
|
109 |
+
frame_time = i * segment_duration
|
110 |
+
frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png')
|
111 |
+
clip.save_frame(frame_path, t=frame_time)
|
112 |
+
|
113 |
+
frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)]
|
114 |
+
final_clip = ImageSequenceClip(frame_paths, fps=clip.fps)
|
115 |
+
final_clip.write_videofile("resampled_video.mp4", codec='libx264')
|
116 |
+
|
117 |
+
print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。")
|
118 |
+
|
119 |
+
def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames', num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale=0.5, width=512, height=768):
|
120 |
+
"""
|
121 |
+
生成带有文本提示的视频。
|
122 |
+
|
123 |
+
:param input_video_path: 输入视频文件路径
|
124 |
+
:param prompt: 文本提示
|
125 |
+
:param model_id: 模型ID
|
126 |
+
:param gif_output_path: GIF 输出文件路径
|
127 |
+
:param seed: 随机种子
|
128 |
+
:param num_frames: 目标帧数
|
129 |
+
:param keep_imgs: 是否保留临时图片
|
130 |
+
:param temp_folder: 临时文件夹路径
|
131 |
+
:param num_inference_steps: 推理步数
|
132 |
+
:param guidance_scale: 引导比例
|
133 |
+
:param controlnet_conditioning_scale: ControlNet 条件比例
|
134 |
+
:param width: 输出宽度
|
135 |
+
:param height: 输出高度
|
136 |
+
"""
|
137 |
+
split_video_into_frames(input_video_path, num_frames, temp_folder)
|
138 |
+
|
139 |
+
folder_path = temp_folder
|
140 |
+
frames = os.listdir(folder_path)
|
141 |
+
frames = list(filter(lambda x: x.endswith(".png"), frames))
|
142 |
+
frames.sort()
|
143 |
+
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames]
|
144 |
+
|
145 |
+
p2 = Processor("openpose")
|
146 |
+
cn2 = [p2(frame) for frame in conditioning_frames]
|
147 |
+
|
148 |
+
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
|
149 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
150 |
+
|
151 |
+
global pipe
|
152 |
+
if pipe is None:
|
153 |
+
pipe = initialize_pipeline(model_id)
|
154 |
+
|
155 |
+
output = pipe(
|
156 |
+
prompt=prompt,
|
157 |
+
negative_prompt=negative_prompt,
|
158 |
+
num_inference_steps=num_inference_steps,
|
159 |
+
guidance_scale=guidance_scale,
|
160 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
161 |
+
width=width,
|
162 |
+
height=height,
|
163 |
+
num_frames=num_frames,
|
164 |
+
conditioning_frames=cn2,
|
165 |
+
generator=generator
|
166 |
+
)
|
167 |
+
|
168 |
+
frames = output.frames[0]
|
169 |
+
export_to_gif(frames, gif_output_path)
|
170 |
+
|
171 |
+
print(f"生成的 GIF 已保存到 {gif_output_path}")
|
172 |
+
|
173 |
+
if not keep_imgs:
|
174 |
+
# 删除临时文件夹
|
175 |
+
import shutil
|
176 |
+
shutil.rmtree(temp_folder)
|
177 |
+
|
178 |
+
def sanitize_prompt(prompt):
|
179 |
+
"""
|
180 |
+
将提示词中的空格和非英文字符替换为下划线。
|
181 |
+
"""
|
182 |
+
return "".join([c if c.isalnum() or c in [",", ","] else '_' for c in prompt])
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
parser = argparse.ArgumentParser(description="生成带有文本提示的视频")
|
186 |
+
parser.add_argument("csv_file", help="CSV 文件路径")
|
187 |
+
parser.add_argument("model_id", help="模型ID")
|
188 |
+
parser.add_argument("output_dir", help="GIF 输出目录")
|
189 |
+
parser.add_argument("--seed", type=int, default=0, help="随机种子")
|
190 |
+
parser.add_argument("--num_frames", type=int, default=16, help="目标帧数")
|
191 |
+
parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片")
|
192 |
+
parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径")
|
193 |
+
parser.add_argument("--num_inference_steps", type=int, default=50, help="推理步数")
|
194 |
+
parser.add_argument("--guidance_scale", type=float, default=20.0, help="引导比例")
|
195 |
+
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.5, help="ControlNet 条件比例")
|
196 |
+
parser.add_argument("--width", type=int, default=512, help="输出宽度")
|
197 |
+
parser.add_argument("--height", type=int, default=768, help="输出高度")
|
198 |
+
|
199 |
+
args = parser.parse_args()
|
200 |
+
|
201 |
+
# 读取CSV文件
|
202 |
+
df = pd.read_csv(args.csv_file)
|
203 |
+
|
204 |
+
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
205 |
+
input_video = row['input_video']
|
206 |
+
prompt = row['prompt']
|
207 |
+
|
208 |
+
# 随机设定seed
|
209 |
+
seed = random.randint(0, 2**32 - 1)
|
210 |
+
|
211 |
+
# 处理提示词
|
212 |
+
sanitized_prompt = sanitize_prompt(prompt)
|
213 |
+
|
214 |
+
# 生成GIF输出路径,包含seed
|
215 |
+
if not os.path.exists(args.output_dir):
|
216 |
+
os.makedirs(args.output_dir)
|
217 |
+
gif_output_path = os.path.join(args.output_dir, f"{sanitized_prompt}_seed_{seed}.gif")
|
218 |
+
|
219 |
+
generate_video_with_prompt(input_video, prompt, args.model_id, gif_output_path, seed, args.num_frames,
|
220 |
+
args.keep_imgs, args.temp_folder, args.num_inference_steps, args.guidance_scale,
|
221 |
+
args.controlnet_conditioning_scale, args.width, args.height)
|
xiangling_video_seed.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|